Question

someone claims to have developed a new lightbulb whose mean lifetime is 1800 hours with a...

someone claims to have developed a new lightbulb whose mean lifetime is 1800 hours with a standard deviation of 100 hours. a sample of 100 of these bubs is tested. The sample mean lifetime is 1770 hours. if the claim is true , what is the probability of obtaining a sample mean that is less than 1770 hours ? Provide your answer in percent.

Homework Answers

Answer #1

Given data are

Population mean = 1800 hours

Population sd =100 hours

sample n =100

Sample mean =1770 hours

In a z normal distribution z =

Z=(1770-1800)/(100/)

= - 30/10 = -3

Then

p (z < -3) =0.00135 = 0.135%

Then the probability of obtaining a sample mean that is less than 1770 is 0.135%

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The lifetime of a lightbulb follows a normal distribution with mean 1500 hours and standard deviation...
The lifetime of a lightbulb follows a normal distribution with mean 1500 hours and standard deviation of 100 hours. a. What is the probability that a lightbulb will last at least 1400 hours? b. What is the probability that a light bulb burns out in fewer than 1600 hours? c. What is the probability that a light bulb burns out in fewer than 1600 hours given that it has lasted 1400 hours? d. A technology breakthrough has occurred for which...
A company has developed a new type of lightbulb, and wants to estimate its mean lifetime....
A company has developed a new type of lightbulb, and wants to estimate its mean lifetime. A simple random sample of 81 bulbs had a mean lifetime of 585.6 hours with a standard deviation of 28 hours. a. Calculate the standard error and round your answer to 1 decimal place: ________________ b. Use StatCrunch to find a 95% confidence interval: _______________________ c. Interpret what your confidence interval means in the context of this problem. d. If the company was hoping...
A manufacturer claims that the mean lifetime of its lithium batteries is less than 1200 hours....
A manufacturer claims that the mean lifetime of its lithium batteries is less than 1200 hours. A homeowner randomly selects 35 of these batteries and finds the mean lifetime to be 1180 hours with a standard deviation of 80 hours. Test the manufacturers claim. Use α = 0.05.
A manufacturer claims that the mean lifetime of its lithium batteries is less than 1520 hours....
A manufacturer claims that the mean lifetime of its lithium batteries is less than 1520 hours. A homeowner selects 27 of these batteries and finds the mean lifetime to be 1498 hours with a standard deviation of 76 hours. Test the manufacturer's claim. Use α = 0.10. A. P-value = 0.112 > 0.02; do not reject H0; There is not enough evidence support the claim, that mean is less than 1500. B. P-value = 0.072 > 0.05; do not reject...
A manufacturer claims that the mean lifetime of its lithium batteries is less than 1500 hours....
A manufacturer claims that the mean lifetime of its lithium batteries is less than 1500 hours. A homeowner selects 25 of these batteries and finds the mean lifetime to be 1480 hours with a standard deviation of 80 hours. Test the manufacturer's claim. Use α = 0.10. A. P-value = 0.112 > 0.10; do not reject H0; There is not enough evidence support the claim, that mean is less than 1500. B. P-value = 0.112 > 0.05; do not reject...
A manufacturer claims that the mean lifetime of its lithium batteries is less than 1120 hours....
A manufacturer claims that the mean lifetime of its lithium batteries is less than 1120 hours. A homeowner selects 25 of these batteries and finds the mean lifetime to be 1100 hours with a standard deviation of 75 hours. Test the manufacturer's claim. Use α = 0.01. A. P-value = 0.110 > 0.01; do not reject H0; There is not enough evidence support the claim, that mean is less than 1120. B. P-value = 0.097 > 0.01; do not reject...
A manufacture of car batteries claims its new batteries will have a mean lifetime of 4...
A manufacture of car batteries claims its new batteries will have a mean lifetime of 4 years. A random sample of 35 batteries found the mean lifetime to be 3.91 years. If the population standard deviation is known to be 0.22 years; is there enough evidence, at the 0.05 significance level, to suggest the mean lifetime is less than 4 years?.
A manufacturer claims that the mean lifetime of its lithium batteries is 902 hours. A homeowner...
A manufacturer claims that the mean lifetime of its lithium batteries is 902 hours. A homeowner selects 25 of these batteries and finds the mean lifetime to be 881 hours with a standard deviation of 83 hours. Test the manufacturer's claim. Use α = 0.05.
A manufacturer claims that the mean lifetime of its fluorescent bulbs is 1500 hours. A homeowner...
A manufacturer claims that the mean lifetime of its fluorescent bulbs is 1500 hours. A homeowner selects 40 bulbs and finds the mean lifetime to be 1490 hours with a population standard deviation of 80 hours. Test the manufacturers claim. Use a=0.05. Show graph as well.
1. A manufacturer claims that the mean lifetime of its fluorescent bulbs is 1500 hours. A...
1. A manufacturer claims that the mean lifetime of its fluorescent bulbs is 1500 hours. A homeowner selects 40 bulbs and finds the mean lifetime to be 1480 hours with a population standard deviation of 80 hours. Test the manufacturer's claim. Use alpha equal to 0.05. State the sample mean and the population standard deviation. 2. Using problem in number 1. Choose the correct hypotheses. 3. Using the problem in number 1. State the critical value(s). 4. Using the problem...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT