Question

Consider the Bayes model Xi|θ ,i = 1, 2, . . . , n ∼ iid...

Consider the Bayes model
Xi|θ ,i = 1, 2, . . . , n ∼ iid with distribution b(1, θ), 0 < θ < 1
Θ ∼ h(θ) = 1.
(a) Obtain the posterior pdf.
(b) Assume squared-error loss and obtain the Bayes estimate of θ.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1,...,Xn∼iid Gamma(3,1/θ) and we assume the prior for θ is InvGamma(10,2). (a) Find the posterior...
Let X1,...,Xn∼iid Gamma(3,1/θ) and we assume the prior for θ is InvGamma(10,2). (a) Find the posterior distribution for θ. (b) If n= 10 and   ̄x= 18.2, find the Bayes estimate under squared error loss. (c) The variance of the data distribution is φ= 3θ2. Find the Bayes estimator (under squared error loss) for φ.Let X1,...,Xn∼iid Gamma(3,1/θ) and we assume the prior for θ is InvGamma(10,2). (a) Find the posterior distribution for θ. (b) If n= 10 and   ̄x= 18.2, find...
Consider Poisson distribution f(x|θ) = (e^−θ) [(θ^x) / (x!)] for x = 0, 1, 2, ....
Consider Poisson distribution f(x|θ) = (e^−θ) [(θ^x) / (x!)] for x = 0, 1, 2, . . . Let the prior distribution for θ be f(θ) = e^−θ for θ > 0. (a) Show that the posterior distribution is a Gamma distribution. With what parameters? (b) Find the Bayes’ estimator for θ.
Given the next distribution with pdfs f(xi |θ) = 1/2iθ  if − i(θ − 1) < xi...
Given the next distribution with pdfs f(xi |θ) = 1/2iθ  if − i(θ − 1) < xi < i(θ + 1) 0 otherwise a)Find a sufficient statistic for θ. b )Is it a minimal sufficient statistic?
Problem 1 Let X1, · · · , Xn IID∼ p(x; θ) = 1/2 (1 +θx),...
Problem 1 Let X1, · · · , Xn IID∼ p(x; θ) = 1/2 (1 +θx), −1 < x < 1, −1 < θ < 1. 1. Estimate θ using the method of moments. 2. Show that the above MoM is consistent by showing it’s mean square error converges to 0 as n goes to infinity. 3. Find its asymptotic distribution.
Let xi, i = 1, . . . , n be iid exponential with rate λ....
Let xi, i = 1, . . . , n be iid exponential with rate λ. Find a conjugate prior for the exponential likelihood.
In an experiment, suppose X1; : : : ; Xnjθ is i.i.d with density f(xjθ) =...
In an experiment, suppose X1; : : : ; Xnjθ is i.i.d with density f(xjθ) = θe^(-xθ); 0 ≤ x > 1; θ > 0, and the prior distribution of θ is Exponential distribution with density π(θ) = (1/β) * e^(-θ/β), where β is a known positive constant. (a) (15pts) Find the posterior distribution of θ. (b) (5pts) Find the Bayes estimator of θ (the Bayes rule estimator with respect to the squared error loss). 1 (c) (10pts) Find the...
LetX1,...,Xnbe a random sample from a continuous distribution with the probability densityfunction (pdf) with an unknown...
LetX1,...,Xnbe a random sample from a continuous distribution with the probability densityfunction (pdf) with an unknown parameterθ:fX(x;θ) ={e−(x−θ), x > θ,0,otherwise.Assume that the prior distribution ofθhas the following density:fΘ(θ) ={2e−2(θ−1), θ >1,0,otherwise.(a) For the observed data 2.1,1.5,1.8,2.3,1.6 (n= 5), find the posterior density ofθ. For the data in (a), find the Bayes estimates ofθunder the squared and absolute loss.
Problem 2 Let X1, · · · , Xn IID∼ N(θ, θ) with θ > 0....
Problem 2 Let X1, · · · , Xn IID∼ N(θ, θ) with θ > 0. Find a pivotal quantity and use it to construct a confidence interval for θ.
Let X1,…,Xn be a sample of iid Bin(2,?) random variables with Θ=[ 0,1]. If ? ∼U[0,1],determine...
Let X1,…,Xn be a sample of iid Bin(2,?) random variables with Θ=[ 0,1]. If ? ∼U[0,1],determine a) the Bayesian estimator of ? for the squared error loss function when n=10 and ∑10i=1xi=17. b) the Bayesian estimator of ? for the absolute loss function when n=10 and ∑10i=1xi =17.
suppose y has a normal distribution with mean = 0 and variance = 1/theta. assume the...
suppose y has a normal distribution with mean = 0 and variance = 1/theta. assume the prior distribution for theta is a gamma distribution with parameters r and lambda. a) what is the posterior distribution for theta? b) find the squared error loss Bayes estimate for theta
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT