Question

A simple random sample of 50 adults is obtained, and each person’s height is measured. The...

A simple random sample of 50 adults is obtained, and each person’s height is measured.

The sample mean is 68 inches. The population standard deviation for heights is 2.35.

*Use a 0.01 significance level to test the claim that the sample is from a population

with a mean equal to 73, against the alternative hypothesis that the mean height

is NOT equal to 73. (ASSUME Normal). (5 points) If z0.01=−2.32 and z0.005=−2.57 are numbers s.t. P(Z < z0.01) = 0.01 and P(Z < z0.005) = 2.57.

Homework Answers

Answer #1

This is the two tailed test .

The null and alternative hypothesis is

H0 : = 73

Ha : 73

Test statistic = z

= ( - ) /    / n

= (68 - 73) / 2.35 / 50

Test statistic = -15.04

P-value = 0.000

Critical value = 2.57

| Test statistics | > Critical value

Reject the null hypothesis .

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A simple random sample of 50 adults is obtained, and each person’s height is measured.The sample...
A simple random sample of 50 adults is obtained, and each person’s height is measured.The sample mean is 68 inches. The population standard deviation for heights is 2.35. • Use a 0.01 significance level to test the claim that the sample is from a population with a mean equal to 73, against the alternative hypothesis that the mean height is less than 73. (ASSUME Normal). If Z0.01=−2.32 and Z0.005=−2.57 are numbers s.t. P(Z < Z0.01) = 0.01 and P(Z <...
A simple random sample of 50 adults is obtained, and each person’s height is measured.The sample...
A simple random sample of 50 adults is obtained, and each person’s height is measured.The sample mean is 68 inches. The population standard deviation for heights is 2.35. Use a 0.01 significance level to test the claim that the sample is from a population with a mean equal to 73, against the alternative hypothesis that the mean height is less than 73. (ASSUME Normal). (5 points)If z0.01=−2.32 and z0.005=−2.57 are numbers s.t.P(Z < z0.01) = 0.01 andP(Z < z0.005) =...
A simple random sample of 100 adults is obtained, and each person’s red blood cell count...
A simple random sample of 100 adults is obtained, and each person’s red blood cell count (in cells per microliter) is measured. The sample mean is 5.20 and the sample standard deviation is 0.50. Use a 0.01 significance level to test the claim that the sample is from a population with a mean less than 5.3, the calculated value of t-test statistic is (Given that H0: µ = 5.3, Ha:µ < 5.3) 1) -20.0 2) -2.0 3) 2.0 4) 20.0
A simple random sample of 100 adults is obtained, and each person’s red blood cell count...
A simple random sample of 100 adults is obtained, and each person’s red blood cell count (in cells per microliter) is measured. The sample mean is 4.63 and the standard deviation for red blood cell counts is 0.54. Construct a 90% confidence interval estimate of the mean red blood cell count of adults.
A random sample of 30 male college students was selected, and their heights were measured. The...
A random sample of 30 male college students was selected, and their heights were measured. The heights (in inches) are given below. 73 66 68 70 69 69 69 66 68 70 72 74 73 71 71 72 69 68 66 73 74 72 68 71 67 73 66 73 69 72 (a) Complete the frequency distribution for the data. Make sure to enter your answers for the relative frequency as decimals, rounded to the nearest tenth. Height Frequency Relative...
A random sample of 40 new baseballs is obtained. Each baseball is dropped onto a concrete...
A random sample of 40 new baseballs is obtained. Each baseball is dropped onto a concrete surface from the same height and the bounce height is measured. The sample mean of bounce heights 92.67 inches and the sample standard deviation is 1.79 inches. Test the claim that the new baseballs have a mean bounce height less than the mean bounce height of old baseballs, 92.84 inches.
A simple random sample of 48 adults is obtained from a normally distributed​ population, and each​...
A simple random sample of 48 adults is obtained from a normally distributed​ population, and each​ person's red blood cell count​ (in cells per​ microliter) is measured. The sample mean is 5.19 and the sample standard deviation is 0.53. Use a 0.01 significance level and the given calculator display to test the claim that the sample is from a population with a mean less than 5.4, which is a value often used for the upper limit of the range of...
A simple random sample of 48 adults is obtained from a normally distributed​ population, and each​...
A simple random sample of 48 adults is obtained from a normally distributed​ population, and each​ person's red blood cell count​ (in cells per​ microliter) is measured. The sample mean is 5.29 and the sample standard deviation is 0.53. Use a 0.01 significance level and the given calculator display to test the claim that the sample is from a population with a mean less than 5.4 which is a value often used for the upper limit of the range of...
A simple random sample of 44 adults is obtained from a normally distributed? population, and each?...
A simple random sample of 44 adults is obtained from a normally distributed? population, and each? person's red blood cell count? (in cells per? microliter) is measured. The sample mean is 5.23 and the sample standard deviation is 0.53. Use a 0.05 significance level and the given calculator display to test the claim that the sample is from a population with a mean less than 5.4 comma which is a value often used for the upper limit of the range...
A simple random sample of 18 male students at a university has an average height of...
A simple random sample of 18 male students at a university has an average height of 70 inches. The average height of men in the general population is 69 inches. Assume that male height is approximately normally distributed with σ = 2.8 inches. Conduct a two-sided hypothesis test to determine whether the male students have heights that are significantly different than expected. Show all hypothesis testing steps.