Question

Given: X F(X) 0 .3 1 .4 2 .1 3 .2 Find expected value of X....

Given:

X F(X)

0 .3

1 .4

2 .1

3 .2

Find expected value of X. Find Standard Deviation of X

Homework Answers

Answer #1

Solution:

x P(X) x*P(x) x2 x2 * P(x)
0 0.3 0 0 0
1 0.4 0.4 1 0.4
2 0.1 0.2 4 0.4
3 0.2 0.6 9 1.8
Sum 1 1.2 14 2.6

Mean = E(X)

= Summation(x.P(X))

= 1.2

E(X) =  1.2

Now , E(X2) = summation [x2 * P(X)] = 2.6

Variance 2 = E(X2) - [E(x)]2

= 2.6 - [1.2]2

=  1.16

Now ,

Standard deviation =   =  1.16 =  1.0770

Standard deviation =  1.0770

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) Find f’(x), given f(x) = x^1/3 (lnx) 2)Find f(x), given f’’(x) = 3 , f’(0)...
1) Find f’(x), given f(x) = x^1/3 (lnx) 2)Find f(x), given f’’(x) = 3 , f’(0) =4 f(0) = -5 3) A ball is thrown upward with an initial velocity = 96 What is the maximum height it reaches? 4) Find the area bounded by f(x) = x^2 +1 , g(x) = x +3
4. Given x: -3 / 0 / 3 P(X =x): .5 / .2 / .3 Find...
4. Given x: -3 / 0 / 3 P(X =x): .5 / .2 / .3 Find the variance given that the expected value is - .6 A. 4.1 B. 2.85 C. 8.142 D. 2.02 E. 6.84 5. A probability distribution has a mean of 10 and standard deviation of 1.5. Use Chevbychev’s Inequality to estimate the probability that an outcome will be between 7 and 13. A. 4 B. 2 C. 5 D. 4
The density function of random variable X is given by f(x) = 1/4 , if 0...
The density function of random variable X is given by f(x) = 1/4 , if 0 Find P(x>2) Find the expected value of X, E(X). Find variance of X, Var(X). Let F(X) be cumulative distribution function of X. Find F(3/2)
Consider a CDF given below: F(x) = 0 for X< -3 = 0.2 -3<=X<-1 = 0.4...
Consider a CDF given below: F(x) = 0 for X< -3 = 0.2 -3<=X<-1 = 0.4 for -1<=X<2 = 0.6 for 2 <= X < 4 = 0.8 for 4 <=X<6 =1 for X>6 Find the PMF of X. Find the expected value of X. Find the second moment of X and the second central moment up to 2 decimal places
Given the function f(x) = 3(1−x)2 for 0 < x < 1. (A) Find the mean...
Given the function f(x) = 3(1−x)2 for 0 < x < 1. (A) Find the mean and variance of X. (B) Find the cumulative probability distribution, F(x).
Q) Find f. f''(x)= −2+36x−12x^2,    f(0)=7, f'(0)=12 f(x)= Q) Find f f''(t)=sint+cost,    f(0)=2,    f'(0)=3 f(t)= Q) Find f f''(x)=20x^3+12x^2+4,    f(0)=4,  &nbs
Q) Find f. f''(x)= −2+36x−12x^2,    f(0)=7, f'(0)=12 f(x)= Q) Find f f''(t)=sint+cost,    f(0)=2,    f'(0)=3 f(t)= Q) Find f f''(x)=20x^3+12x^2+4,    f(0)=4,    f(1)=2 f(x)=
Given f(x) = ( c(x + 1) if 1 < x < 3 0 else as...
Given f(x) = ( c(x + 1) if 1 < x < 3 0 else as a probability function for a continuous random variable; find a. c. b. The moment generating function MX(t). c. Use MX(t) to find the variance and the standard deviation of X.
Given that a function F is differentiable. a f(a) f1(a) 0 0 2 1 2 4...
Given that a function F is differentiable. a f(a) f1(a) 0 0 2 1 2 4 2 0 4 Find 'a' such that limx-->a(f(x)/2(x−a)) = 2. Provide with hypothesis and any results used.
1.Find ff if f′′(x)=2+cos(x),f(0)=−7,f(π/2)=7.f″(x)=2+cos⁡(x),f(0)=−7,f(π/2)=7. f(x)= 2.Find f if f′(x)=2cos(x)+sec2(x),−π/2<x<π/2,f′(x)=2cos⁡(x)+sec2⁡(x),−π/2<x<π/2, and f(π/3)=2.f(π/3)=2. f(x)= 3. Find ff if...
1.Find ff if f′′(x)=2+cos(x),f(0)=−7,f(π/2)=7.f″(x)=2+cos⁡(x),f(0)=−7,f(π/2)=7. f(x)= 2.Find f if f′(x)=2cos(x)+sec2(x),−π/2<x<π/2,f′(x)=2cos⁡(x)+sec2⁡(x),−π/2<x<π/2, and f(π/3)=2.f(π/3)=2. f(x)= 3. Find ff if f′′(t)=2et+3sin(t),f(0)=−8,f(π)=−9. f(t)= 4. Find the most general antiderivative of f(x)=6ex+9sec2(x),f(x)=6ex+9sec2⁡(x), where −π2<x<π2. f(x)= 5. Find the antiderivative FF of f(x)=4−3(1+x2)−1f(x)=4−3(1+x2)−1 that satisfies F(1)=8. f(x)= 6. Find ff if f′(x)=4/sqrt(1−x2)  and f(1/2)=−9.
f(x) =x2 -x use f'(x)=lim h->0 f(x+h) - f(x)/h find: 1. f '(x) 2. f '(2)...
f(x) =x2 -x use f'(x)=lim h->0 f(x+h) - f(x)/h find: 1. f '(x) 2. f '(2) 3. Find the equation of a tangent line to the given function at x=2 4. f ' (-3) 5. Find the equation of a tangent line to the given function at x=-3