Question

1. Suppose a random variable X has a pmf 
p(x) = 3^(x-1)/4^x , x = 1,2,......

1. Suppose a random variable X has a pmf

p(x) = 3^(x-1)/4^x , x = 1,2,...
(a) Find the moment generating function of X. 

(b) Give a realistic example of an experiment that this random variable can be defined from its sample space. 

(c) Find the mean and variance of X.

Homework Answers

Answer #1

Realistic example:

A company tests the manufactured bulbs until the first defective bulb is found. So the number of bulbs tested will be a geometric random variable taking values 1,2,3...

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Let X be a discrete random variable with the probability mass function P(x) = kx2...
1. Let X be a discrete random variable with the probability mass function P(x) = kx2 for x = 2, 3, 4, 6. (a) Find the appropriate value of k. (b) Find P(3), F(3), P(4.2), and F(4.2). (c) Sketch the graphs of the pmf P(x) and of the cdf F(x). (d) Find the mean µ and the variance σ 2 of X. [Note: For a random variable, by definition its mean is the same as its expectation, µ = E(X).]
Suppose that X follows geometric distribution with the probability of success p, where 0 < p...
Suppose that X follows geometric distribution with the probability of success p, where 0 < p < 1, and probability of failure 1 − p = q. The pmf is given by f(x) = P(X = x) = q x−1p, x = 1, 2, 3, 4, . . . . Show that X is a pmf. Compute the mean and variance of X without using moment generating function technique. Show all steps. To compute the variance of X, first compute...
Suppose that X is a discrete random variable with ?(? = 1) = ? and ?(?...
Suppose that X is a discrete random variable with ?(? = 1) = ? and ?(? = 2) = 1 − ?. Three independent observations of X are made: (?1, ?2, ?3) = (1,2,2). a. Estimate ? through the sample mean (this is an example of the “method of moment” for estimating a parameter). b. Find the likelihood function and MLE for ?.
Let N be a positive integer random variable with PMF of the form pN(n)=12⋅n⋅2−n,n=1,2,…. Once we...
Let N be a positive integer random variable with PMF of the form pN(n)=12⋅n⋅2−n,n=1,2,…. Once we see the numerical value of N , we then draw a random variable K whose (conditional) PMF is uniform on the set {1,2,…,2n} . 1. Find joint PMF pN,K(n,k) For n=1,2,… and k=1,2,…,2n 2. Find the marginal PMF pK(k) as a function of k . For simplicity, provide the answer only for the case when k is an even number. For k=2,4,6,… 3. Let...
Let X be a normal random variance with media 1 and variance 4. Consider a new...
Let X be a normal random variance with media 1 and variance 4. Consider a new variance A random variable T defined below: T = -1 if X < -2 T = 0 if - 2 ≤ X ≤ 0 T = 1 if x>0 Find the moment generating function of T and, from it, calculate E (T) and Var (T).
The random variables, X and Y , have the joint pmf f(x,y)=c(x+2y), x=1,2 y=1,2 and zero...
The random variables, X and Y , have the joint pmf f(x,y)=c(x+2y), x=1,2 y=1,2 and zero otherwise. 1. Find the constant, c, such that f(x,y) is a valid pmf. 2. Find the marginal distributions for X and Y . 3. Find the marginal means for both random variables. 4. Find the marginal variances for both random variables. 5. Find the correlation of X and Y . 6. Are the two variables independent? Justify.
Let f(x) = (1/2)^x, x = 1,2,3,... be the PMF of the random variable X. Find...
Let f(x) = (1/2)^x, x = 1,2,3,... be the PMF of the random variable X. Find the MGF, mean, and variance of X.
Suppose that the moment generating function of a random variable X is of the form MX...
Suppose that the moment generating function of a random variable X is of the form MX (t) = (0.4e^t + 0.6)8 . What is the moment generating function, MZ(t), of the random variable Z = 2X + 1? (Hint: think of 2X as the sum two independent random variables). Find E[X]. Find E[Z ]. Compute E[X] another way - try to recognize the origin of MX (t) (it is from a well-known distribution)
Suppose that ? is a random variable with the following pmf: ?(?) = ?/ ? ;...
Suppose that ? is a random variable with the following pmf: ?(?) = ?/ ? ; ? = 1,2,3,4,5 a) Find the expected value and variance of ?. b) Find the expected value of √?, ?[√?].
The moment generating function for the random variable X is MX(t) = (e^t/ (1−t )) if...
The moment generating function for the random variable X is MX(t) = (e^t/ (1−t )) if |t| < 1. Find the variance of X.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT