Question

The lifetime of a car follows the Weibull distribution with a failure rate of 0.1 per...

The lifetime of a car follows the Weibull distribution with a failure rate of 0.1 per year and parameter a = 0.5. What is the time to which 25% of the cars will last?

Homework Answers

Answer #1

ANSWER::

NOTE:: I HOPE YOUR HAPPY WITH MY ANSWER....***PLEASE SUPPORT ME WITH YOUR RATING...

***PLEASE GIVE ME "LIKE"...ITS VERY IMPORTANT FOR ME NOW....PLEASE SUPPORT ME ....THANK YOU

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose a car radiator useful lifetime has Weibull distribution with β = 1.5 and the mean...
Suppose a car radiator useful lifetime has Weibull distribution with β = 1.5 and the mean lifetime of 150,000 miles. John has just bought a used car with 180,000 miles and original radiator which is still good. What is the probability that it’s going to last at least 20,000 miles more before needing replacement?
3. Suppose a car radiator useful lifetime has Weibull distribution with β = 1.5 and the...
3. Suppose a car radiator useful lifetime has Weibull distribution with β = 1.5 and the mean lifetime of 150,000 miles. John has just bought a used car with 180,000 miles and original radiator which is still good. What is the probability that it’s going to last at least 20,000 miles more before needing replacement?
The lifetime of a bird can be modeled as a Weibull distribution with a=0.9. a) If...
The lifetime of a bird can be modeled as a Weibull distribution with a=0.9. a) If the probability that a bird lives longer than 10 years is 0.4, find the value of the parameter λ? b) What is the time to which 80% of the birds live?
A particular circulation pump has a Weibull lifetime distribution with a rate parameter λ = 0.064...
A particular circulation pump has a Weibull lifetime distribution with a rate parameter λ = 0.064 per 1000 hours and a shape parameter β = 1.23. What is the probability that this pump will run for at least 1300 hours? Express your answer rounded to three decimal places.
The type of battery in Jim's laptop has a lifetime (in years) which follows a Weibull...
The type of battery in Jim's laptop has a lifetime (in years) which follows a Weibull distribution with parameters α = 2 and β = 4 . The type of battery in Jim's tablet has a lifetime (in years) which follows an exponential distribution with parameter λ = 1 / 4 . Find the probability that the lifetime of his laptop battery is less than 2.2 years and that the lifetime of his tablet battery is less than 3.1 years.
a)Consider a manufacturing process . The failure rate of the process follows an exponential distribution with...
a)Consider a manufacturing process . The failure rate of the process follows an exponential distribution with a failure rate of 0.1 failures per year. Determine what is the probability to have a failure after the first 20 years B)Consider a manufacturing process . The failure rate of the process follows an exponential distribution with a failure rate of 0.1 failures per year. Determine what is the probability to have a failure between year 10 and year 15
Consider a manufacturing process.The failure rate of the process follows an exponential distribution with a failure...
Consider a manufacturing process.The failure rate of the process follows an exponential distribution with a failure rate of 0.1 failures per year. Determine what is the probability to have a failure in the first 5 years? between year 5 and 10?
The length of time in hours that a certain part lasts follows a Weibull distribution with...
The length of time in hours that a certain part lasts follows a Weibull distribution with parameters α = 2 and β = 2. a. What are the mean and standard deviation of this distribution? b. What is the probability that the part lasts less than 1 hour? c. What is the equation for the failure rate of the part? d. If the distribution is actually Gamma instead of Weibull find the equation for the failure rate of the part...
The lifetime of bacteria follows the Weibull distribution. The probability that the bacteria lives for more...
The lifetime of bacteria follows the Weibull distribution. The probability that the bacteria lives for more than 10 hours is 0.76 and that it lives more than 20 hours is 0.3. The probability that among 300 bacteria more than 200 live longer than 10 hours can be computed as P(Z>a). What is the value of a? Please report your answer in 3 decimal places.
The failure time, in weeks, of a component is a random variable with a Weibull distribution...
The failure time, in weeks, of a component is a random variable with a Weibull distribution with parameters a=7.49 and b=1.28. What is the probability that the component will still be working after 1.0 weeks?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT