Question

Let X1 and X2 be two independent random variables having gamma distribution with parameters α1 =...

Let X1 and X2 be two independent random variables having gamma distribution with parameters α1 = 3, β1 = 3 and α2 = 5, β2 = 1, respectively. We are interested in finding the distribution of Y = 2X1 + 6X2. A standard approach is to apply a two-step procedure as that in question 2. However, as we discussed in the class, if the MGF technique is applicable, then it would be preferred due to its simplicity.

(a) Find the MGF of Y = 2X1 + 6X2.

(b) From the MGF to identify the distribution of Y .

Homework Answers

Answer #1

I have answered the question below

Please up vote for the same and thanks!!!

Do reach out in the comments for any queries

Answer:

a)

b)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
7.5) If X1 and X2 are independent random variables having exponential densities with the parameters θ1...
7.5) If X1 and X2 are independent random variables having exponential densities with the parameters θ1 and θ2, use the distribution function technique to find the probability density of Y=X1+X2 when a) θ1 ≠ θ2 b) θ1 = θ2 7.7) With reference to the two random variables of Exercise 7.5, show that if θ1 = θ2 = 1, the random variable Z1=X1/(X1 + X2) has the uniform density with α=0 and β=1.                                      (I ONLY NEED TO ANSWER 7.7)
7.5) If X1 and X2 are independent random variables having exponential densities with the parameters θ1...
7.5) If X1 and X2 are independent random variables having exponential densities with the parameters θ1 and θ2, use the distribution function technique to find the probability density of Y=X1+X2 when a) θ1 ≠ θ2 b) θ1 = θ2 7.7) With reference to the two random variables of Exercise 7.5, show that if θ1 = θ2 = 1, the random variable Z1=X1/(X1 + X2) has the uniform density with α=0 and β=1.                                      (I ONLY NEED TO ANSWER 7.7)
Let X1, X2, . . . Xn be iid random variables from a gamma distribution with...
Let X1, X2, . . . Xn be iid random variables from a gamma distribution with unknown α and unknown β. Find the method of moments estimators for α and β
Let X1,X2,..., Xn be independent random variables that are exponentially distributed with respective parameters λ1,λ2,..., λn....
Let X1,X2,..., Xn be independent random variables that are exponentially distributed with respective parameters λ1,λ2,..., λn. Identify the distribution of the minimum V = min{X1,X2,...,Xn}.
You are given that X1 and X2 are two independent and identically distributed random variables with...
You are given that X1 and X2 are two independent and identically distributed random variables with a Poisson distribution with mean 2. Let Y = max{X1, X2}. Find P(Y = 1).
Let X1, X2, X3, and X4 be mutually independent random variables from the same distribution. Let...
Let X1, X2, X3, and X4 be mutually independent random variables from the same distribution. Let S = X1 + X2 + X3 + X4. Suppose we know that S is a Chi-Square random variable with 2 degrees of freedom. What is the distribution of each of the Xi?
Consider the following data for a dependent variable y and two independent variables,  x1 and x2. x1...
Consider the following data for a dependent variable y and two independent variables,  x1 and x2. x1 x2 y 30 12 94 47 10 108 25 17 112 51 16 178 40 5 94 51 19 175 74 7 170 36 12 117 59 13 142 76 16 211 The estimated regression equation for these data isŷ = −18.37 + 2.01x1 + 4.74x2. Here, SST = 15,182.9, SSR = 14,052.2, sb1 = 0.2471,  and  sb2 = 0.9484. (A) Test for a significant relationship...
Consider the following data for a dependent variable y and two independent variables, x1and x2. x1...
Consider the following data for a dependent variable y and two independent variables, x1and x2. x1 x2 y 30 12 96 47 10 108 25 17 112 51 16 178 40 5 94 51 19 175 74 7 170 36 12 117 59 13 142 76 16 211 The estimated regression equation for these data is ŷ = −17.33 + 2.00x1 + 4.73x2. Here, SST = 15,002.1, SSR = 13,887.5, sb1 = 0.2454,and sb2 = 0.9417. (a)Test for a significant...
We have a value Y dependent on a set of independent random variables X1, X2,..., Xn...
We have a value Y dependent on a set of independent random variables X1, X2,..., Xn by the following relation: Y=X12+X22+...+Xn2. Each of X variables is distributed via the normal distribution with following parameters: 1. Mean values of all Xi = 0 2. Variances are identical and are equal to ak2 Find probability density of a random value of Y.
Please read the article and answear about questions. Determining the Value of the Business After you...
Please read the article and answear about questions. Determining the Value of the Business After you have completed a thorough and exacting investigation, you need to analyze all the infor- mation you have gathered. This is the time to consult with your business, financial, and legal advis- ers to arrive at an estimate of the value of the business. Outside advisers are impartial and are more likely to see the bad things about the business than are you. You should...