Question

(a) Given that X ~ N(?? = 3; ?? 2= 4), compute P[11 < X <...

(a) Given that X ~ N(?? = 3; ?? 2= 4), compute P[11 < X < 7].

(b)What would be the sampling distribution of the sample average, ?̅, given that sample size is equal to 10? Explain.

(c) If the distribution of X is not known, but we still have ?? = 3, ?? 2= 4, what can you say about the sampling distribution of ?̅ when the sample size is 20? Does anything change if the sample size is 100? Explain.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose x has a distribution with μ = 24 and σ = 11. 1. If random...
Suppose x has a distribution with μ = 24 and σ = 11. 1. If random samples of size n = 16 are selected, can we say anything about the x distribution of sample means? 2. If the original x distribution is normal, can we say anything about the x distribution of random samples of size 16? 3. Find P(20 ≤ x ≤ 25). (Round your answer to four decimal places.) ___________________
EVALUATE CNXPXQN-X FOR THE VALUES OF N,X,AD P GIVEN BELOW N=8,X-1,P=1/2 N=7,X=2,P=0.8 N=6, X=4,P=2/5
EVALUATE CNXPXQN-X FOR THE VALUES OF N,X,AD P GIVEN BELOW N=8,X-1,P=1/2 N=7,X=2,P=0.8 N=6, X=4,P=2/5
question: 4.Suppose you have a distribution, X, with mean = 11 and standard deviation = 4....
question: 4.Suppose you have a distribution, X, with mean = 11 and standard deviation = 4. Define a new random variable Y = 2X - 2. Find the mean and standard deviation of Y. question 5:In testing a certain kind of missile, target accuracy is measured by the average distance X (from the target) at which the missile explodes. The distance X is measured in miles and the sampling distribution of X is given by: X 0 10 50 100...
For a given binomial distribution with  n = 11, p = 0.35, find the following probabilities P(...
For a given binomial distribution with  n = 11, p = 0.35, find the following probabilities P( x is less than or equal to 6, x≤ 6)
Given x(n) = {-1, 0, 2, 3}; where x(n=0) = -1                                   &nbsp
Given x(n) = {-1, 0, 2, 3}; where x(n=0) = -1                                                                  ­ a) compute its Discrete Time Fourier Transform X(ejw) b) sample X(ejw) at kw1 = 2?k/4, k = 0,1,2,3 and show that is equal to X~(k) which is the Discrete Fourier Series (DFS) of x~(n)
For a given binomial distribution with n = 11, p = 0.35, find the following probabilities...
For a given binomial distribution with n = 11, p = 0.35, find the following probabilities P(x is greater than 7, x> 7)
A geometric distribution has a pdf given by P(X = x) = p(1-p)^x, where x =...
A geometric distribution has a pdf given by P(X = x) = p(1-p)^x, where x = 0, 1, 2,..., and 0 < p < 1. This form of the geometric starts at x=0, not at x=1. Given are the following properties: E(X) = (1-p)/p and Var(X) = (1-p)/p^2 A random sample of size n is drawn, the data x1, x2, ..., xn. Likelihood is p = 1/(1+ x̄)) MLE is p̂ = 1/(1 + x̄)) asymptotic distribution is p̂ ~...
4. Given x: -3 / 0 / 3 P(X =x): .5 / .2 / .3 Find...
4. Given x: -3 / 0 / 3 P(X =x): .5 / .2 / .3 Find the variance given that the expected value is - .6 A. 4.1 B. 2.85 C. 8.142 D. 2.02 E. 6.84 5. A probability distribution has a mean of 10 and standard deviation of 1.5. Use Chevbychev’s Inequality to estimate the probability that an outcome will be between 7 and 13. A. 4 B. 2 C. 5 D. 4
Suppose x has a distribution with μ = 25 and σ = 2. (a) If random...
Suppose x has a distribution with μ = 25 and σ = 2. (a) If random samples of size n = 16 are selected, can we say anything about the x distribution of sample means? Yes, the x distribution is normal with mean μx = 25 and σx = 0.5.No, the sample size is too small.     Yes, the x distribution is normal with mean μx = 25 and σx = 2.Yes, the x distribution is normal with mean μx = 25...
6.5-4) Suppose x has a distribution with μ = 39 and σ = 20. (a)If random...
6.5-4) Suppose x has a distribution with μ = 39 and σ = 20. (a)If random samples of size n = 16 are selected, can we say anything about the x distribution of sample means? Yes, the x distribution is normal with mean μx = 39 and σx = 5. No, the sample size is too small.    Yes, the x distribution is normal with mean μx = 39 and σx = 1.3. Yes, the x distribution is normal with mean...