Question

The taxi and takeoff time for commercial jets is a random variable x with a mean...

The taxi and takeoff time for commercial jets is a random variable x with a mean of 9 minutes and a standard deviation of 2.9 minutes. Assume that the distribution of taxi and takeoff times is approximately normal. You may assume that the jets are lined up on a runway so that one taxies and takes off immediately after the other, and that they take off one at a time on a given runway. (a) What is the probability that for 33 jets on a given runway, total taxi and takeoff time will be less than 320 minutes? (Round your answer to four decimal places.) Incorrect: Your answer is incorrect. (b) What is the probability that for 33 jets on a given runway, total taxi and takeoff time will be more than 275 minutes? (Round your answer to four decimal places.) (c) What is the probability that for 33 jets on a given runway, total taxi and takeoff time will be between 275 and 320 minutes? (Round your answer to four decimal places.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The taxi and takeoff time for commercial jets is a random variable x with a mean...
The taxi and takeoff time for commercial jets is a random variable x with a mean of 8.3 minutes and a standard deviation of 3.5 minutes. Assume that the distribution of taxi and takeoff times is approximately normal. You may assume that the jets are lined up on a runway so that one taxies and takes off immediately after the other, and that they take off one at a time on a given runway. (a) What is the probability that...
The taxi and takeoff time for commercial jets is a random variable x with a mean...
The taxi and takeoff time for commercial jets is a random variable x with a mean of 8.5 minutes and a standard deviation of 2.9 minutes. Assume that the distribution of taxi and takeoff times is approximately normal. You may assume that the jets are lined up on a runway so that one taxies and takes off immediately after the other, and that they take off one at a time on a given runway. (a) What is the probability that...
The taxi and takeoff time for commercial jets is a random variable x with a mean...
The taxi and takeoff time for commercial jets is a random variable x with a mean of 8.7 minutes and a standard deviation of 2.6 minutes. Assume that the distribution of taxi and takeoff times is approximately normal. You may assume that the jets are lined up on a runway so that one taxies and takes off immediately after the other, and that they take off one at a time on a given runway. (a) What is the probability that...
The taxi and takeoff time for commercial jets is a random variable x with a mean...
The taxi and takeoff time for commercial jets is a random variable x with a mean of 8.7 minutes and a standard deviation of 2.4 minutes. Assume that the distribution of taxi and takeoff times is approximately normal. You may assume that the jets are lined up on a runway so that one taxies and takes off immediately after the other, and that they take off one at a time on a given runway. (a) What is the probability that...
The taxi and takeoff time for commercial jets is a random variable x with a mean...
The taxi and takeoff time for commercial jets is a random variable x with a mean of 8.2 minutes and a standard deviation of 2.8 minutes. Assume that the distribution of taxi and takeoff times is approximately normal. You may assume that the jets are lined up on a runway so that one taxies and takes off immediately after the other, and that they take off one at a time on a given runway. (a) What is the probability that...
The taxi and takeoff time for commercial jets is a random variable x with a mean...
The taxi and takeoff time for commercial jets is a random variable x with a mean of 8.8 minutes and a standard deviation of 3.4 minutes. Assume that the distribution of taxi and takeoff times is approximately normal. You may assume that the jets are lined up on a runway so that one taxies and takes off immediately after the other, and that they take off one at a time on a given runway. (a) What is the probability that...
The taxi and takeoff time for commercial jets is a random variable x with a mean...
The taxi and takeoff time for commercial jets is a random variable x with a mean of 8.3 minutes and a standard deviation of 2 minutes. Assume that the distribution of taxi and takeoff times is approximately normal. You may assume that the jets are lined up on a runway so that one taxies and takes off immediately after the other, and that they take off one at a time on a given runway. (a) What is the probability that...
The taxi and takeoff time for commercial jets is a random variable x with a mean...
The taxi and takeoff time for commercial jets is a random variable x with a mean of 9 minutes and a standard deviation of 3.5 minutes. Assume that the distribution of taxi and takeoff times is approximately normal. You may assume that the jets are lined up on a runway so that one taxies and takes off immediately after the other, and that they take off one at a time on a given runway. (a) What is the probability that...
Let x be a random variable that represents the weights in kilograms (kg) of healthy adult...
Let x be a random variable that represents the weights in kilograms (kg) of healthy adult female deer (does) in December in a national park. Then x has a distribution that is approximately normal with mean μ = 70.0 kg and standard deviation σ = 8.0 kg. Suppose a doe that weighs less than 61 kg is considered undernourished. (a) What is the probability that a single doe captured (weighed and released) at random in December is undernourished? (Round your...
1)Given that x is a normal variable with mean μ = 46 and standard deviation σ...
1)Given that x is a normal variable with mean μ = 46 and standard deviation σ = 6.2, find the following probabilities. (Round your answers to four decimal places.) (a)  P(x ≤ 60) (b)  P(x ≥ 50) (c)  P(50 ≤ x ≤ 60) 2)The Customer Service Center in a large New York department store has determined that the amount of time spent with a customer about a complaint is normally distributed, with a mean of 9.9 minutes and a standard deviation of 2.4...