uppose you want to test the claim the the paired sample data given below come from a population for which the mean difference is μd=0.
x 51 89 60 78 75 81 59
y 79 84 87 75 93 55 64
Use a 0.01 significance level to find the following:
(a) The mean value of the differnces d for the paired sample data d⎯⎯⎯=
(b) The standard deviation of the differences d for the paired sample data sd=
(c) The t test statistic t=
(d) The positive critical value t=
(e) The negative critical value t=
(f) Does the test statistic fall in the critical region? A. Yes B. No
(g) Construct a 99% conficence interval for the population mean of all differences x−y. <μd<
The statistical software output for this problem is:
Summary statistics:
Column | Mean | Std. dev. |
---|---|---|
Differences | -6.2857143 | 19.559433 |
Paired T hypothesis test:
μD = μ1 - μ2 : Mean of the
difference between x and y
H0 : μD = 0
HA : μD ≠ 0
Hypothesis test results:
Difference | Mean | Std. Err. | DF | T-Stat | P-value |
---|---|---|---|---|---|
x - y | -6.2857143 | 7.3927709 | 6 | -0.85025147 | 0.4278 |
99% confidence interval results:
Difference | Mean | Std. Err. | DF | L. Limit | U. Limit |
---|---|---|---|---|---|
x - y | -6.2857143 | 7.3927709 | 6 | -33.693881 | 21.122453 |
Hence,
a) Mean = -6.2857
b) Standard deviation = 19.5594
c) Test statistic = -0.8503
d) Positive critical value = 3.7074
e) Negative critical value = -3.7074
f) No
g) 99% confidence interval:
-33.6939 < μd < 21.1225
Get Answers For Free
Most questions answered within 1 hours.