Using Data below, there is a 99% chance that the true population standard deviation is above ( ).
Please include Excel Calculations.
Strength | ||||||
279.3 | 280.7 | 245.9 | 269.8 | 256.9 | 252.6 | 257 |
263.8 | 265.9 | 272.5 | 250.6 | 255.6 | 242.5 | 268.1 |
274.2 | 248.2 | 249.8 | 265.3 | 256.1 | 274 | 250.3 |
259.5 | 283.8 | 242.2 | 270.9 | 265.1 | 264.7 | 275.1 |
257.1 | 267.4 | 279.3 | 243.9 | 243.3 | 271.4 | 261.5 |
253.4 | 259.6 | 259.2 | 265.4 | 267.5 | 267.5 | 255.5 |
259.6 | 252 | 286.7 | 256.1 | 261.9 | 252.7 | 267.1 |
Variance = 124.2293 | =VAR(A1:A49) |
Standard deviation = 11.14582 | =STDEV(A1:A49) |
Excel:
124.229337 | VAR(A1:A49) | n | 49 |
11.1458215 | STDEV(A1:A49) | ||
XL^2 | 26.51059101 | CHISQ.INV(0.005,48) | |
XU^2 | 76.96876773 | CHISQ.INV.RT(0.005,48) | |
CI | |||
Lower limit | 77.47308862 | (n-1)*S^2/XU^2 | |
Upper limit | 224.9292806 | (n-1)*S^2/XL^2 |
there is a 99% chance that the true population standard deviation is above 77.4731 and below 224.9293
Get Answers For Free
Most questions answered within 1 hours.