Question

Engineers want to design seats in commercial aircraft so that they are wide enough to fit...

Engineers want to design seats in commercial aircraft so that they are wide enough to fit

90​%

of all males.​ (Accommodating 100% of males would require very wide seats that would be much too​ expensive.) Men have hip breadths that are normally distributed with a mean of

14.8

in. and a standard deviation of

1.1

in. Find

Upper P90.

That​ is, find the hip breadth for men that separates the smallest

90​%

from the largest

10​%.

The hip breadth for men that separates the smallest

90​%

from the largest

10​%

is

Upper P90 equals = ? in.

Homework Answers

Answer #1

SOLUTION:

Given that,

mean = = 14.8

standard deviation = =1.1

Using standard normal table,

P(Z > z) = 90%

= 1 - P(Z < z) = 0.90

= P(Z < z ) = 1 - 0.90

= P(Z < z ) = 0.1

= P(Z < z ) = 0.1

z = -1.28 (using standard normal (Z) table )

Using z-score formula  

x = z * +

x= -1.28*1.1+14.8

x=13.392

Upper P90 equals = 13.392 in.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Engineers want to design seats in commercial aircraft so that they are wide enough to fit...
Engineers want to design seats in commercial aircraft so that they are wide enough to fit 90 ​% of all males.​ (Accommodating 100% of males would require very wide seats that would be much too​ expensive.) Men have hip breadths that are normally distributed with a mean of 14.5    in. and a standard deviation of 1.1 in. Find Upper P 90 . That​ is, find the hip breadth for men that separates the smallest 90 ​% from the largest 10...
Engineers want to design seats in commercial aircraft so that they are wide enough to fit...
Engineers want to design seats in commercial aircraft so that they are wide enough to fit 9999​% of all males.​ (Accommodating 100% of males would require very wide seats that would be much too​ expensive.) Men have hip breadths that are normally distributed with a mean of 14.814.8   in. and a standard deviation of 1.11.1 in. Find Upper P 99P99. That​ is, find the hip breadth for men that separates the smallest 9999​% from the largest 11​%.
Engineers want to design seats in commercial aircraft so that they are wide enough to fit...
Engineers want to design seats in commercial aircraft so that they are wide enough to fit 95​% of all males.​ (Accommodating 100% of males would require very wide seats that would be much too​ expensive.) Men have hip breadths that are normally distributed with a mean of 14.9  in. and a standard deviation of 0.9 in. Find Upper P 95. That​ is, find the hip breadth for men that separates the smallest 95​% from the largest 5​%.
1. Assume that adults have IQ scores that are normally distributed with a mean of 104.3...
1. Assume that adults have IQ scores that are normally distributed with a mean of 104.3 and a standard deviation of 23.8. Find the probability that a randomly selected adult has an IQ greater than 147.0. The probability that a randomly selected adult from this group has an IQ greater than 147.0 is.. 2. Engineers want to design seats in commercial aircraft so that they are wide enough to fit 90​% of all males.​ (Accommodating 100% of males would require...
Delta airlines case study Global strategy. Describe the current global strategy and provide evidence about how...
Delta airlines case study Global strategy. Describe the current global strategy and provide evidence about how the firms resources incompetencies support the given pressures regarding costs and local responsiveness. Describe entry modes have they usually used, and whether they are appropriate for the given strategy. Any key issues in their global strategy? casestudy: Atlanta, June 17, 2014. Sea of Delta employees and their families swarmed between food trucks, amusement park booths, and entertainment venues that were scattered throughout what would...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT