Question

The following output summarizes the results for a one-way analysis of variance experiment in which the...

The following output summarizes the results for a one-way analysis of variance experiment in which the treatments were three different hybrid cars and the variable measured was the miles per gallon (mpg) obtained while driving the same route. (You may find it useful to reference the q table.)

Hybrid 1: x⎯⎯1x¯1 = 30, n1 = 20
Hybrid 2: x⎯⎯2x¯2 = 43, n2 = 15
Hybrid 3: x⎯⎯3x¯3 = 30, n3 = 18

Source of Variation SS df MS F p-value
Between Groups 1,149.92 2 574.96 21.59 0.0000
Within Groups 1,331.63 50 26.63
Total 2,481.55 52

b. Use Tukey’s HSD method at the 1% significance level to determine confidence intervals for the population mean differences and state which individual pairs of hybrids’ means differ. (If the exact value for nTc is not found in the table, then round down. Negative values should be indicated by a minus sign. Round intermediate calculations to at least 4 decimal places. Round your answers to 2 decimal places.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A one-way analysis of variance experiment produced the following ANOVA table. (You may find it useful...
A one-way analysis of variance experiment produced the following ANOVA table. (You may find it useful to reference the q table). SUMMARY Groups Count Average Column 1 6 0.72 Column 2 6 1.74 Column 3 6 2.51   Source of Variation SS df MS F p-value Between Groups 8.50 2 4.25 16.35 0.0002 Within Groups 3.93 15 0.26 Total 12.43 17 b. Calculate 99% confidence interval estimates of μ1 − μ2,μ1 − μ3, and μ2 − μ3 with Tukey’s HSD approach....
A one-way analysis of variance experiment produced the following ANOVA table. (You may find it useful...
A one-way analysis of variance experiment produced the following ANOVA table. (You may find it useful to reference the q table). SUMMARY Groups Count Average Column 1 6 0.71 Column 2 6 1.43 Column 3 6 2.15   Source of Variation SS df MS F p-value Between Groups 10.85 2 5.43 20.88 0.0000 Within Groups 3.86 15 0.26 Total 14.71 17 SUMMARY Groups Count Average Column 1 6 0.71 Column 2 6 1.43 Column 3 6 2.15 ANOVA Source of Variation...
A one-way analysis of variance experiment produced the following ANOVA table. (You may find it useful...
A one-way analysis of variance experiment produced the following ANOVA table. (You may find it useful to reference the q table). SUMMARY Groups Count Average Column 1 3 0.66 Column 2 3 1.24 Column 3 3 2.85   Source of Variation SS df MS F p-value Between Groups 8.02 2 4.01 4.09 0.0758 Within Groups 5.86 6 0.98 Total 13.88 8 a. Conduct an ANOVA test at the 5% significance level to determine if some population means differ. Do not reject...
The following output summarizes a portion of the results for a two-way analysis of variance experiment...
The following output summarizes a portion of the results for a two-way analysis of variance experiment with no interaction. Factor A consists of four different kinds of organic fertilizers, factor B consists of three different kinds of soil acidity levels, and the variable measured is the height (in inches) of a plant at the end of four weeks. a. Find the missing values in the ANOVA table. (Carry at least four decimal places in all intermediate calculations. Do NOT use...
The following statistics are computed by sampling from three normal populations whose variances are equal: (You...
The following statistics are computed by sampling from three normal populations whose variances are equal: (You may find it useful to reference the t table and the q table.) x−1x−1 = 19.8, n1 = 4; x−2x−2 = 24.0, n2 = 10; x−3x−3 = 28.0, n3 = 6; MSE = 27.8 a. Calculate 95% confidence intervals for μ1 − μ2, μ1 − μ3, and μ2 − μ3 to test for mean differences with Fisher’s LSD approach. (Negative values should be indicated...
The following statistics are calculated by sampling from four normal populations whose variances are equal: (You...
The following statistics are calculated by sampling from four normal populations whose variances are equal: (You may find it useful to reference the t table and the q table.) x⎯⎯1 x ¯ 1 = 133, n1 = 3; x⎯⎯2 x ¯ 2 = 145, n2 = 3; x⎯⎯3 x ¯ 3 = 137, n3 = 3; x⎯⎯4 x ¯ 4 = 127, n4 = 3; MSE = 45.9 Use Fisher’s LSD method to determine which population means differ at α...
The following table summarizes the results of a two-factor ANOVA evaluating an independent-measures experiment with 2...
The following table summarizes the results of a two-factor ANOVA evaluating an independent-measures experiment with 2 levels of factor A, 3 levels of factor B, and n = 8 participants in each treatment condition. A. Fill in all missing values in the table. Show your work (i.e., all computational steps for finding the missing values). Hint: start with the df values. B. Do these data indicate any significant effects (assume p < .05 for hypothesis testing of all three effects)?...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You may find it useful to reference the appropriate table: z table or t table) H0: μ1 − μ2 ≥ 0 HA: μ1 − μ2 < 0 x−1x−1 = 232 x−2x−2 = 259 s1 = 30 s2 = 20 n1 = 6 n2 = 6 a-1. Calculate the value of the test statistic under the assumption that the population variances are equal. (Negative values should...
The following observations were obtained when conducting a two-way ANOVA experiment with no interaction Click here...
The following observations were obtained when conducting a two-way ANOVA experiment with no interaction Click here for the Excel Data File Factor A Factor B 1 2 3 4   X⎯⎯⎯jX¯j for Factor B 1 5 2 2 1 2.500 2 9 6 9 8 8.000 3 15 11 13 16 13.750 X−iX−i for Factor A 9.667 6.000 8.000 8.333 X⎯⎯⎯⎯⎯⎯=8.083X¯¯⁢ = 8.083 a. Calculate SST, SSA, SSB, and SSE. (Round intermediate calculations to at least 4 decimal places. Round your...
The following observations were obtained when conducting a two-way ANOVA experiment with no interaction. Click here...
The following observations were obtained when conducting a two-way ANOVA experiment with no interaction. Click here for the Excel Data File Factor A Factor B 1 2 3 4   X¯¯¯jX¯j for Factor B 1 3 4 3 5 3.750 2 8 10 9 8 8.750 3 12 16 14 13 13.750 X−iX−i for Factor A 7.667 10.000 8.667 8.667 X¯¯¯¯¯¯¯ = 8.7500X¯¯⁢ = 8.7500 a. Calculate SST, SSA, SSB, and SSE. (Round intermediate calculations to at least 4 decimal places....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT