1 20.8 1 20.4 1 25.1 1 27.4 1 15.4 1 15.3 1 13.9 2 16.3 2 14.5 2 10.4 2 12.2 2 12.5 2 9.5 2 15.3 3 16.8 3 20.9 3 28.4 3 22.5 3 17.5 3 14.9 3 22.4 3 17.5 3 25.4 3 22.4 4 16.7 4 14.5 4 13.7 4 15.4 4 12.4 4 16 4 7.5 4 12.9 4 18.310.
What was the margin of error for the confidence interval for gasoline mileage of make 2?
What is the value of the t test statistic for testing the hypothesis that makes 2 and 3 do not differ in mileage?
Excel output:
1 | 20.8 | 2 | 16.3 | 3 | 16.8 | 4 | 16.7 |
1 | 20.4 | 2 | 14.5 | 3 | 20.9 | 4 | 14.5 |
1 | 25.1 | 2 | 10.4 | 3 | 28.4 | 4 | 13.7 |
1 | 27.4 | 2 | 12.2 | 3 | 22.5 | 4 | 15.4 |
1 | 15.4 | 2 | 12.5 | 3 | 17.5 | 4 | 12.4 |
1 | 15.3 | 2 | 9.5 | 3 | 14.9 | 4 | 16 |
1 | 13.9 | 2 | 15.3 | 3 | 22.4 | 4 | 7.5 |
3 | 17.5 | 4 | 12.9 | ||||
3 | 25.4 | 4 | 18.31 | ||||
3 | 22.4 | ||||||
Mean 2 | AVERAGE(D1:D7) | 12.95714 | Mean 3 | 20.87 | |||
sd 2 | STDEV(D1:D7) | 2.527091 | sd 3 | 4.209526 |
1.
Margin of error for the 95% confidence interval for gasoline mileage is,
2.
Hypothesis:
Test statistic,
where,
Get Answers For Free
Most questions answered within 1 hours.