Let X be normally distributed with mean μ = 17 and standard deviation σ = 8. [You may find it useful to reference the z table.]
a. Find P(X ≤ 1). (Round "z" value to 2 decimal places and final answer to 4 decimal places.)
b. Find P(X > 5). (Round "z" value to 2 decimal places and final answer to 4 decimal places.)
c. Find P(7 ≤ X ≤ 15). (Round "z" value to 2 decimal places and final answer to 4 decimal places.)
d. Find P(11 ≤ X ≤ 19). (Round "z" value to 2 decimal places and final answer to 4 decimal places.)
solution:-
a. Find P(X ≤ 1)
=> P(z ≤ (1-17)/8) = P(z < -2)
= 0.0228
b. P(X > 5) = P(z > (5-17)/8)
= P(z > -1.5)
= P(z < 1.5)
= 0.9332
c. Find P(7 ≤ X ≤ 15)
=> P((7-17)/8 < z < (15-17)/8)
=> P(-1.25 < z < -0.25)
=> P(z < -0.25) - P(z < -1.25)
= (1-P(z < 0.25)) - (1-P(z < 1.25))
= (1-0.5987) - (1-0.8944)
= 0.2957
d. P(11 ≤ X ≤ 19)
=> P((11-17)/8 < z < (19-17)/8)
=> P(-0.75 < z < 0.25)
=> P(z < 0.25) - P(z < -0.75)
=> P(z < 0.25) - (1-P(z < 0.75))
=> 0.5987 - (1-0.7734)
=> 0.3721
Get Answers For Free
Most questions answered within 1 hours.