Question

Let X1, ..., Xn be i.i.d. N(µ, σ^2 ) We know that S^ 2 is an...

Let X1, ..., Xn be i.i.d. N(µ, σ^2 )

We know that S^ 2 is an unbiased estimator for σ^ 2 . Show that S^2 X is a consistent estimator for σ^ 2

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1,X2...Xn be i.i.d. with N(theta, 1) a) find the CR Rao lower-band for the variance...
Let X1,X2...Xn be i.i.d. with N(theta, 1) a) find the CR Rao lower-band for the variance of an unbiased  estimator of theta b)------------------------------------of theta^2 c)-----------------------------------of P(X>0)
Suppose X1, . . . , Xn are a random sample from a N(0, σ^2) distribution....
Suppose X1, . . . , Xn are a random sample from a N(0, σ^2) distribution. Find the MLE of σ^2 and show that it is an unbiased efficient estimator.
Let X1, . . . , Xn and Y1, . . . , Yn be two...
Let X1, . . . , Xn and Y1, . . . , Yn be two random samples with the same mean µ and variance σ^2 . (The pdf of Xi and Yj are not specified.) Show that T = (1/2)Xbar + (1/2)Ybar is an unbiased estimator of µ. Evaluate MSE(T; µ)
Let {X1, ..., Xn} be i.i.d. from a distribution with pdf f(x; θ) = θ/xθ+1 for...
Let {X1, ..., Xn} be i.i.d. from a distribution with pdf f(x; θ) = θ/xθ+1 for θ > 2 and x > 1. (a) (10 points) Calculate EX1 and V ar(X1). (b) (5 points) Find the method of moments estimator of θ. (c) (5 points) If we denote the method of moments estimator as ˆθ1. What does √ n( ˆθ1 − θ) converge in distribution to? (d) (5 points) Is the method of moment estimator efficient? Verify your answer.
Let X1, . . . , Xn be i.i.d from pmf f(x|λ) where f(x) = (e^(−λ)*(λ^x))/x!,...
Let X1, . . . , Xn be i.i.d from pmf f(x|λ) where f(x) = (e^(−λ)*(λ^x))/x!, λ > 0, x = 0, 1, 2 a) Find MoM (Method of Moments) estimator for λ b) Show that MoM estimator you found in (a) is minimal sufficient for λ c) Now we split the sample into two parts, X1, . . . , Xm and Xm+1, . . . , Xn. Show that ( Sum of Xi from 1 to m, Sum...
Suppose that X1,...,Xn are iid N(μ,σ2) where μ is unknown but σ is known.  μ>=2. Let z(μ)=μ3....
Suppose that X1,...,Xn are iid N(μ,σ2) where μ is unknown but σ is known.  μ>=2. Let z(μ)=μ3. Find an initial unbiased estimator T for z(μ). Next, derive the Rao-Blackwellized version of T.
Consider a large population which has population mean µ, and population variance σ 2 . We...
Consider a large population which has population mean µ, and population variance σ 2 . We take a sample of size n = 3 from this population, thinking of the samples as realizations of the RVs X1, X2, and X3, where the Xi can be considered iid. We are interested in estimating µ. (a) Consider the estimator ˆµ1 = X1 + X2 − X3. Is this estimator unbiased for µ? Explain your answer. (b) Find the variance of ˆµ1. (c)...
Let X1, X2,...,Xn represent n random draws from a population with standard deviation σ and variance...
Let X1, X2,...,Xn represent n random draws from a population with standard deviation σ and variance σ^2 , so that V ar[X1] = V ar[X2] = ... = V ar[Xn] = σ^ 2 . Define the sample average taken from a sample of size n as follows: X¯ n ≡ (X1 + X2 + ... + Xn)/ n . a) Derive an expression for the standard deviation of X¯ n. [Hint: Your answer should depend only on σ and n]...
Suppose that X is Poisson, with unknown mean λ, and let X1, ..., Xn be a...
Suppose that X is Poisson, with unknown mean λ, and let X1, ..., Xn be a random sample from X. a. Find the CRLB for the variance of estimators based on X1, ..., Xn. ̂̅̂ b. Verify that ? = X is an unbiased estimator for λ, and then show that ? is an efficient estimator for λ.
let X1,X2,..............,Xn be a r.s from N(θ,1). Find the best unbiased estimator for (θ)^2
let X1,X2,..............,Xn be a r.s from N(θ,1). Find the best unbiased estimator for (θ)^2