Question

Use R statistical software to answer the following: Let X1, ..., X6 be a random sample...

Use R statistical software to answer the following:

Let X1, ..., X6 be a random sample of size n = 6 from the distribution with pdf

f(x) = x / 8 , 0 < x < 4 and 0 otherwise.

(a) Use Monte Carlo to calculate Var(Xbar), and knowing that Var(Xbar) = sigma^2 / n, what is the true value of Var(Xbar)?

## use runif() to generate samples

Homework Answers

Answer #1

set.seed(9999)

n=10000

m={}

for(i in 1:n){

x=(16*runif(6))^0.5

m[i]=mean(x)}

var(m)*(n-1)/n

 [1] 0.1483157

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
use R software Suppose that X1, …, Xn are a random sample from a lognormal distribution....
use R software Suppose that X1, …, Xn are a random sample from a lognormal distribution. Construct a 95% confidence interval for the parameter μ. Use a Monte Carlo method to obtain an empirical estimate of the confidence level when data is generated from standard lognormal.
Use R. Generate a random sample with n=15 random observations from an exponential distribution with mean=1....
Use R. Generate a random sample with n=15 random observations from an exponential distribution with mean=1. Calculate the sample median, which is an estimator of the population median. Use bootstrap (nonparametric, with B=1000) methods to estimate the variance of the estimator for the population median. use the Monte Carlo method, e.g. generate 1000 samples of size 15 to estimate the true variance of the median estimator. Compare and comment on your results.
Let X1,..., Xn be a random sample from a distribution with pdf as follows: fX(x) =...
Let X1,..., Xn be a random sample from a distribution with pdf as follows: fX(x) = e^-(x-θ) , x > θ 0 otherwise. Find the sufficient statistic for θ. Find the maximum likelihood estimator of θ. Find the MVUE of θ,θˆ Is θˆ a consistent estimator of θ?
Use r statistical software to Pick a population with a particular distribution. From the population use...
Use r statistical software to Pick a population with a particular distribution. From the population use software to obtain k random samples (for example k = 10) each containing n elements (for example n = 30.) Give the distributions of X̄ For each sample, calculate the value of the statistic and construct a histogram of the k values. This histogram gives the approximate sampling distribution of the statistic. The statics of interest are X̄ and V (X̄ ) Calculate E(X̄)...
Let X1, X2 · · · , Xn be a random sample from the distribution with...
Let X1, X2 · · · , Xn be a random sample from the distribution with PDF, f(x) = (θ + 1)x^θ , 0 < x < 1, θ > −1. Find an estimator for θ using the maximum likelihood
Use R statistical software to answer the following: A random sample of 172 women were given...
Use R statistical software to answer the following: A random sample of 172 women were given the flu vaccine while pregnant, and a control sample of 168 women were not given the vaccine. 2. The average birth weight for the vaccine group was 3.13 kg with a standard deviation of 0.53 kg. The average birth weight for the control group was 3.02 kg with a standard deviation of 0.45 kg. (a) Estimate the mean difference in birth weight μ1−μ2 for...
1. Let X1, X2, . . . , Xn be a random sample from a distribution...
1. Let X1, X2, . . . , Xn be a random sample from a distribution with pdf f(x, θ) = 1 3θ 4 x 3 e −x/θ , where 0 < x < ∞ and 0 < θ < ∞. Find the maximum likelihood estimator of ˆθ.
Let X1,X2,...,X50 denote a random sample of size 50 from the distribution whose probability density function...
Let X1,X2,...,X50 denote a random sample of size 50 from the distribution whose probability density function is given by f(x) =(5e−5x, if x ≥ 0 0, otherwise If Y = X1 + X2 + ... + X50, then approximate the P(Y ≥ 12.5).
Let X1,...,Xn be iid exp(θ) rvs. (a) Compute the pdf of Xmin. I have the pdf...
Let X1,...,Xn be iid exp(θ) rvs. (a) Compute the pdf of Xmin. I have the pdf (b) Create an unbiased estimator for θ based on Xmin. Compute the variance of the resulting estimator. (c) Perform a Monte Carlo simulation of N= 10,0000 samples of your unbiased estimator from part (b) using θ = 2 and n = 100 to validate your answer. Include a histogram of the samples. (d) Which is more efficient: your estimator from part (b) or the...
use R software Let X be a non-negative random variable with μ = E[X] < ∞....
use R software Let X be a non-negative random variable with μ = E[X] < ∞. For a random sample x1, …, xn from the distribution of X, the Gini ratio is defined by G=12n2μn∑j=1n∑i=1|xi−xj|.G=12n2μ∑j=1n∑i=1n|xi−xj|. The Gini ratio is applied in economics to measure inequality in income distribution (see, e.g., [168]). Note that G can be written in terms of the order statistics x(i) as G=1n2μn∑i=1(2i−n−1)x(i).G=1n2μ∑i=1n(2i−n−1)x(i). If the mean is unknown, let ˆGG^ be the statistic G with μ replaced...