Assuming that the population standard deviation is unknown, calculate the 95% confidence interval of the population mean.
The following is the data. Calculating Process should be shown by Excel (Formulas). What formulas in statistics are used?
7 |
21 |
23 |
24 |
18 |
16 |
2 |
19 |
11 |
6 |
3 |
13 |
17 |
9 |
5 |
12 |
13 |
17 |
4 |
14 |
15 |
25 |
12 |
24 |
22 |
14 |
14 |
20 |
15 |
11 |
26 |
17 |
21 |
11 |
4 |
13 |
16 |
14 |
13 |
14 |
25 |
23 |
9 |
15 |
14 |
12 |
19 |
11 |
18 |
9 |
12 |
13 |
17 |
6 |
19 |
17 |
13 |
23 |
16 |
17 |
11 |
15 |
11 |
23 |
8 |
16 |
10 |
26 |
19 |
16 |
23 |
15 |
20 |
30 |
21 |
21 |
14 |
1 |
13 |
14 |
21 |
3 |
26 |
18 |
6 |
17 |
18 |
15 |
10 |
14 |
9 |
17 |
10 |
16 |
13 |
9 |
14 |
6 |
19 |
4 |
8 |
4 |
7 |
8 |
2 |
21 |
6 |
14 |
20 |
7 |
18 |
11 |
Solution:-
Steps
1) Paste the data points in the excel.
2) Click on data in the tool bar and then on data analysis.
3) Select "Descriptive statistics" from the options.
4) Paste the data set in input range and select the summary statistics.
5) Click on Ok.
Data | |
Mean | 14.29464 |
Standard Error | 0.589024 |
Median | 14 |
Mode | 14 |
Standard Deviation | 6.233647 |
Sample Variance | 38.85835 |
Kurtosis | -0.45507 |
Skewness | -0.00464 |
Range | 29 |
Minimum | 1 |
Maximum | 30 |
Sum | 1601 |
Count | 112 |
95% confidence interval of the population mean is C.I = (13.127, 15.46).
C.I = 14.295 + 1.982 × 0.589
C.I = 14.295 + 1.1674
C.I = (13.127, 15.46)
Get Answers For Free
Most questions answered within 1 hours.