whats the mean deviation, standard deviation and range for these set of numbers 47,47,66,50,78,61
Solution:
The required formulas are given as below:
Mean deviation = ∑|X – mean|/n
Standard deviation = Sqrt[∑(X - mean)^2 / (n – 1)]
Range = Maximum – Minimum
The calculation table is given as below:
No. |
X |
|X - mean| |
(X - mean)^2 |
1 |
47 |
11.16667 |
124.6945189 |
2 |
47 |
11.16667 |
124.6945189 |
3 |
66 |
7.83333 |
61.36105889 |
4 |
50 |
8.16667 |
66.69449889 |
5 |
78 |
19.83333 |
393.3609789 |
6 |
61 |
2.83333 |
8.027758889 |
Total |
349 |
61 |
778.8333333 |
From above table, we have
Sample size = n = 6
Mean deviation = ∑|X – mean|/n = 61/6 = 10.16667
Standard deviation = Sqrt[∑(X - mean)^2 / (n – 1)]
Standard deviation = Sqrt(778.8333333/(6 - 1))
Standard deviation =12.48065
Maximum = 78
Minimum = 47
Range = 78 – 47 = 31
Get Answers For Free
Most questions answered within 1 hours.