Question

(Need solution for part b) You are offered to play the following game. You roll a...

(Need solution for part b) You are offered to play the following game. You roll a fair 6-sided die once and observe the result which is shown by the random variable X. At this point, you can stop the game and win X dollars. Or, you can also choose to discard the X dollars you win in the first roll, and roll the die for a second time to observe the value Y . In this case, you will win Y dollars. Let W be the number of dollars that you win in this game.

b) If you have to pay the price of 1 dollar to do a second roll, i.e., you win Y − 1 dollars if you choose to roll the die a second time. Will you change your strategy? Why?

part a) was

What strategy do you use to maximize E[W]? What is the maximum E[W] you can achieve using your strategy?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You roll a fair 6-sided die once and observe the result which is shown by the...
You roll a fair 6-sided die once and observe the result which is shown by the random variable X. At this point, you can stop and win X dollars. Or, you can also choose to discard the X dollars you win in the first roll, and roll the die for a second time to observe the value Y. In this case, you will win Y dollars. Let W be the number of dollars that you win in this game. a)...
. A dice game is played as follows: you pay one dollar to play, then you...
. A dice game is played as follows: you pay one dollar to play, then you roll a fair six-sided die. If you roll a six, you win three dollars. Someone claims to have won a thousand dollars playing this game nine thousand times. How unlikely is this? Find an upper bound for the probability that a person playing this game will win at least a thousand dollars.
In a game, you roll two fair dice and observe the uppermost face on each of...
In a game, you roll two fair dice and observe the uppermost face on each of the die. Let X1 be the number on the first die and X2 be the number of the second die. Let Y = X1 - X2 denote your winnings in dollars. a. Find the probability distribution for Y . b. Find the expected value for Y . c. Refer to (b). Based on this result, does this seem like a game you should play?
Suppose that you are offered the following "deal." You roll a six sided die. If you...
Suppose that you are offered the following "deal." You roll a six sided die. If you roll a 6, you win $12. If you roll a 2, 3, 4 or 5, you win $1. Otherwise, you pay $10. a. Complete the PDF Table. List the X values, where X is the profit, from smallest to largest. Round to 4 decimal places where appropriate. Probability Distribution Table X P(X) b. Find the expected profit. $ (Round to the nearest cent) c....
Suppose that you are offered the following "deal." You roll a six sided die. If you...
Suppose that you are offered the following "deal." You roll a six sided die. If you roll a 6, you win $9. If you roll a 2, 3, 4 or 5, you win $1. Otherwise, you pay $6 a. Complete the PDF Table. List the X values, where X is the profit, from smallest to largest. Round to 4 decimal places where appropriate. Probability Distribution Table    X P(X)    b. Find the expected profit. $ (Round to the nearest...
Suppose that you are offered the following "deal." You roll a six sided die. If you...
Suppose that you are offered the following "deal." You roll a six sided die. If you roll a 6, you win $13. If you roll a 4 or 5, you win $5. Otherwise, you pay $6. a. Complete the PDF Table. List the X values, where X is the profit, from smallest to largest. Round to 4 decimal places where appropriate. Probability Distribution Table X P(X) b. Find the expected profit. $ ____ (Round to the nearest cent) c. Interpret...
Suppose that you are offered the following "deal." You roll a six sided die. If you...
Suppose that you are offered the following "deal." You roll a six sided die. If you roll a 6, you win $20. If you roll a 4 or 5, you win $1. Otherwise, you pay $8. a. Complete the PDF Table. List the X values, where X is the profit, from smallest to largest. Round to 4 decimal places where appropriate. Probability Distribution Table X P(X) b. Find the expected profit. $ (Round to the nearest cent) c. Interpret the...
Suppose that you are offered the following "deal." You roll a six sided die. If you...
Suppose that you are offered the following "deal." You roll a six sided die. If you roll a 6, you win $7. If you roll a 4 or 5, you win $1. Otherwise, you pay $8. a. Complete the PDF Table. List the X values, where X is the profit, from smallest to largest. Round to 4 decimal places where appropriate. Probability Distribution Table X P(X) b. Find the expected profit. $ (Round to the nearest cent) c. Interpret the...
Suppose that you are offered the following "deal." You roll a six sided die. If you...
Suppose that you are offered the following "deal." You roll a six sided die. If you roll a 6, you win $17. If you roll a 4 or 5, you win $2. Otherwise, you pay $10. a. Complete the PDF Table. List the X values, where X is the profit, from smallest to largest. Round to 4 decimal places where appropriate. Probability Distribution Table X P(X) b. Find the expected profit. $ (Round to the nearest cent) c. Interpret the...
You play a gambling game with a friend in which you roll a die. If a...
You play a gambling game with a friend in which you roll a die. If a 1 or 2 comes up, you win $8. How much should you lose on any other outcome in order to make this a fair game?