Question

Suppose next that we have even less knowledge of our patient, and we are only given...

Suppose next that we have even less knowledge of our patient, and we are only given the accuracy of the blood test and prevalence of the disease in our population. We are told that the blood test is 96 percent reliable, this means that the test will yield an accurate positive result in 96% of the cases where the disease is actually present. Gestational diabetes affects 7 percent of the population in our patient’s age group, and that our test has a false positive rate of 10 percent. Use your knowledge of Bayes’ Theorem and Conditional Probabilities to compute the following quantities based on the information given only in part 2:

  1. If 100,000 people take the blood test, how many people would you expect to test positive and actually have gestational diabetes?
  2. What is the probability of having the disease given that you test positive?
  3. If 100,000 people take the blood test, how many people would you expect to test negative despite actually having gestational diabetes?
  4. What is the probability of having the disease given that you tested negative?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2. Suppose next that we have even less knowledge of our patient, and we are only...
2. Suppose next that we have even less knowledge of our patient, and we are only given the accuracy of the blood test and prevalence of the disease in our population. We are told that the blood test is 95 percent reliable, this means that the test will yield an accurate positive result in 95% of the cases where the disease is actually present. Gestational diabetes affects 6% of the population in our patient’s age group, and that our test...
2 2. Suppose next that we have even less knowledge of our patient, and we are...
2 2. Suppose next that we have even less knowledge of our patient, and we are only given the accuracy of the blood test and prevalence of the disease in our population. We are told that the blood test is 9# percent reliable, this means that the test will yield an accurate positive result in 9#% of the cases where the disease is actually present. Gestational diabetes affects #+1 percent of the population in our patient’s age group, and that...
A certain deadly disease occurs in 1 percent of the population. A blood test for this...
A certain deadly disease occurs in 1 percent of the population. A blood test for this disease has a 2 percent false positive rate, and a 5 percent false negative rate (i.e., 2 percent of those not having the disease test positive, and 5 percent of those having the disease test negative). Suppose you want to put your mind at ease and take the blood test. a) If you have the disease, what is the probability you would correctly get...
Consider a particular genetic disease affects 3% of adults in the U.S. population. Fortunately, there is...
Consider a particular genetic disease affects 3% of adults in the U.S. population. Fortunately, there is a genetic test for the gene that causes the disease. The test is 98% accurate; that is, 98% of the people who take the test get the correct result (and 2% of people tested get the wrong result). In Springfield, there are 100,000 adults, and they all get tested for the disease. How many of the residents of Springfield are likely to have the...
A medical test is available to determine whether a patient has a certain disease. To determine...
A medical test is available to determine whether a patient has a certain disease. To determine the accuracy of the test, a total of 10,100 people are tested. Only 100 of these people have the disease, while the other 10,000 are disease free. Of the disease-free people, 9800 get a negative result, and 200 get a positive result. The 100 people with the disease all get positive results. Use this information as you answer the questions below. 1) Find the...
Suppose you are analyzing a test for a blood disease where • 94% of people with...
Suppose you are analyzing a test for a blood disease where • 94% of people with the disease test positive. • Only 0.5% of the population has this disease. • The false-positive rate is 0.1%. (a) What is the test’s precision, that is the probability that a person with a positive test has the disease? (b) What is the accuracy of the test, that is the probability that either a person tests positive AND has the disease OR a person...
Suppose a test for cancer is given. If a person has cancer, the test will detect...
Suppose a test for cancer is given. If a person has cancer, the test will detect it in 96% of the cases; if the person does not have cancer, the test will show a positive result 1% of the time. If we assume that 12% of the population taking the test actually has cancer, what is the probability (rounded to the nearest percent) that a person taking the test and obtaining a positive actually has cancer?
⦁   Suppose in August the Covid-19 situation has calmed down. Since not everyone shows symptoms and...
⦁   Suppose in August the Covid-19 situation has calmed down. Since not everyone shows symptoms and some symptoms could have been a different pneumonia we might use an anti-body test to see if people have had the disease. Let’s assume by August 40% of the US has had the disease. The anti-body test is not perfect. Some people will get “false positives” or “false negatives”. 90% of people who test positive will actually have had the disease. 95% of people...
test for a certain disease is found to be 95% accurate, meaning that it will correctly...
test for a certain disease is found to be 95% accurate, meaning that it will correctly diagnose the disease in 95 out of 100 people who have the ailment. The test is also 95% accurate for a negative result, meaning that it will correctly exclude the disease in 95 out of 100 people who do not have the ailment. For a certain segment of the population, the incidence of the disease is 4%. (1) If a person tests positive, find...
A new, non-invasive colon cancer screening method boasts a sensitivity of 99%. That is, given that...
A new, non-invasive colon cancer screening method boasts a sensitivity of 99%. That is, given that a patient has colon cancer, the screening method has a 0.99 probability of yielding a positive test. The test is also 90% specific, meaning that if a person without colon cancer is screened, there is a 0.9 probability of a negative test result. Among the population of adults over 45 years of age, the proportion who have colon cancer is 0.0013 (thirteen out of...