Observations in sample: 50 autos
Miles driven until transmission failure
89346 |
36289 |
62559 |
72989 |
78146 |
39722 |
76415 |
29239 |
89123 |
65076 |
70347 |
65562 |
88808 |
93237 |
57438 |
98929 |
71397 |
37001 |
119366 |
72008 |
76308 |
122643 |
57807 |
75672 |
51175 |
84552 |
29160 |
97499 |
101857 |
26319 |
78258 |
145019 |
67294 |
66607 |
95562 |
75952 |
67771 |
56072 |
34087 |
63885 |
122419 |
73418 |
86153 |
89865 |
62897 |
90154 |
68046 |
37445 |
117082 |
81368 |
72162.4 |
26060.92 |
Question: How many autos should be used in a random sample if we would like the population mean miles driven until transmission failure to be estimated with a margin of error of 3000 miles at the 99% confidence level? (Use the sample standard deviation as the planning value for the population standard deviation.)
from above data std deviation =26406.64
for 99 % CI value of z= | 2.576 |
standard deviation σ= | 26406.64 |
margin of error E = | 3000 |
required sample size n=(zσ/E)2 = | 515.0 |
(try 516 if z value =2.58 taken with 2 decimal places only )
Get Answers For Free
Most questions answered within 1 hours.