Question

A popular theory is that presidential candidates have an advantage if they are taller than their...

A popular theory is that presidential candidates have an advantage if they are taller than their main opponents. Listed are heights​ (in centimeters) of randomly selected presidents along with the heights of their main opponents. Complete parts​ (a) and​ (b) below.

Height (cm) of President

190

187

181

184

191

179

Height (cm) of Main Opponent

182

173

172

173

184

176

  1. Use the sample data with a 0.05 significance level to test the claim that for the population of heights for presidents and their main​ opponents, the differences have a mean greater than 0 cm.

B. Identify the test statistic.

C. Identify the​ P-value.

D. What is the conclusion based on the hypothesis​ test?

e. What feature of the confidence interval leads to the same conclusion reached in part​ (a)?

Since the confidence interval contains ____________     ____________the null hypothesis.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
hw 9 # 16 A popular theory is that presidential candidates have an advantage if they...
hw 9 # 16 A popular theory is that presidential candidates have an advantage if they are taller than their main opponents. Listed are heights​ (in centimeters) of randomly selected presidents along with the heights of their main opponents. Complete parts​ (a) and​ (b) below. Height left parenthesis cm right parenthesis of PresidentHeight (cm) of President 186 169 166 177 183 177 Height left parenthesis cm right parenthesis of Main OpponentHeight (cm) of Main Opponent 162 185 175 183 187...
4. The data set, “Presidents,” shows that 18 presidents were taller than their opponents. Follow the...
4. The data set, “Presidents,” shows that 18 presidents were taller than their opponents. Follow the StatCrunch directions to construct a 95% confidence interval estimate of the population percentage. Based on the result, does it appear that greater height is an advantage for presidential candidates? Why or why not? below is the heights HEIGHT 188 170 189 163 183 171 185 168 173 173 173 178 183 193 173 173 183 180 168 170 178 182 180 183 178 182...
The data set, “Presidents,” shows that 18 presidents were taller than their opponents. Follow the StatCrunch...
The data set, “Presidents,” shows that 18 presidents were taller than their opponents. Follow the StatCrunch directions to construct a 95% confidence interval estimate of the population percentage. Based on the result, does it appear that greater height is an advantage for presidential candidates? Why or why not? below is the heights HEIGHT 188 170 189 163 183 171 185 168 173 173 173 178 183 193 173 173 183 180 168 170 178 182 180 183 178 182 188...
Can you explain step by step. Can I resolve this problem on the calculator TI-84 Texas...
Can you explain step by step. Can I resolve this problem on the calculator TI-84 Texas Instruments. Refer to the data set of 20 randomly selected presidents given below. Treat the data as a sample and find the proportion of presidents who were taller than their opponents. Use that result to construct a​ 95% confidence interval estimate of the population percentage. Based on the​ result, does it appear that greater height is an advantage for presidential​ candidates? Why or why​...
115 124 132 134 136 137 138 138 139 140 141 141 144 144 145 145...
115 124 132 134 136 137 138 138 139 140 141 141 144 144 145 145 145 146 146 148 150 150 150 151 151 151 151 154 154 156 156 156 156 157 158 159 159 159 159 160 161 161 161 161 162 162 163 164 164 164 164 165 165 165 166 166 166 166 168 168 168 168 168 168 169 169 169 169 170 170 171 171 172 173 173 173 173 173 174 174...
5. To test the belief that sons are taller than their fathers, a student randomly selects...
5. To test the belief that sons are taller than their fathers, a student randomly selects 13 fathers who have adult male children. She records the height of both the father and son in inches and obtains the data in the table given on the Lab pdf. Is this evidence that sons are taller than their fathers? Test an appropriate hypothesis using a significance level of 0.10 (  = 0.10). You can assume all conditions and assumptions are met. Matched Pair...
Open Three Hospitals data. SETUP: It is believed that the number of injuries recorded in hospital...
Open Three Hospitals data. SETUP: It is believed that the number of injuries recorded in hospital 1 is different from the number of injuries recorded in hospital 2. Given the data your job is to confirm or disprove this assertion. 10. What test/procedure did you perform? (4 points) a. Regression b. Two sided t-test c. One sided t-test d. Confidence Interval 11. What is the statistical interpretation? (4 points) a. Average of data is inconsistent with the claim b. P-value...
Specify hypothesis, define the parameter and population of interest Identify the test-statistic and its sampling distribution...
Specify hypothesis, define the parameter and population of interest Identify the test-statistic and its sampling distribution Fins the test-statistic value and its associated P-Value Use your P-Value state your statistical conslusion Interpret your conclusion in the context of the proble Doing deucedly difficult duty, daring distaff detective Sheerluck Hopeless draws dire data-driven deductions, discouraging dastardly dangerous deeds during deep, dark Decembers. Disturbingly daft Dr. Witless, Sheerluck’s stumpling sidekick, shares Sheerluck’s adventures with the public. Agile agent and annoyingly anal analyst...
Part C: Regression and Correlation Analysis Use the dependent variable (labeled Y) and the independent variables...
Part C: Regression and Correlation Analysis Use the dependent variable (labeled Y) and the independent variables (labeled X1, X2, and X3) in the data file. Use Excel to perform the regression and correlation analysis to answer the following. Generate a scatterplot for the specified dependent variable (Y) and the X1 independent variable, including the graph of the "best fit" line. Interpret. Determine the equation of the "best fit" line, which describes the relationship between the dependent variable and the selected...
Use the dependent variable (labeled Y) and the independent variables (labeled X1, X2, and X3) in...
Use the dependent variable (labeled Y) and the independent variables (labeled X1, X2, and X3) in the data file. Use Excel to perform the regression and correlation analysis to answer the following. Generate a scatterplot for the specified dependent variable (Y) and the X1 independent variable, including the graph of the "best fit" line. Interpret. Determine the equation of the "best fit" line, which describes the relationship between the dependent variable and the selected independent variable. Determine the coefficient of...