Question

The binomial random variable x consists of n = 60 trials and has the probability of...

The binomial random variable x consists of n = 60 trials and has the probability of failure q = .4. Using the normal approximation, compute the probability of 45 successes.

Homework Answers

Answer #1

TOPIC:Normal approximation to the Binomial distribution.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let x be a binomial random variable with n = 25 and the probability of failure...
Let x be a binomial random variable with n = 25 and the probability of failure is 0.4. Using the normal distribution to approximate the binomial, determine the probability that more than 12 successes will occur. A. 0.8461 B. 0.1539 C. 0.9192 D. 0.0329
Let X be a binomial random variable with n = 400 trials and probability of success...
Let X be a binomial random variable with n = 400 trials and probability of success p = 0.01. Then the probability distribution of X can be approximated by Select one: a. a Hypergeometric distribution with N = 8000,  n = 400,  M = 4.     b. a Poisson distribution with mean 4. c. an exponential distribution with mean 4. d. another binomial distribution with  n = 800, p = 0.02 e. a normal distribution with men 40 and variance 3.96.
Suppose we have a binomial distribution with n trials and probability of success p. The random...
Suppose we have a binomial distribution with n trials and probability of success p. The random variable r is the number of successes in the n trials, and the random variable representing the proportion of successes is p̂ = r/n. (a) n = 44; p = 0.53; Compute P(0.30 ≤ p̂ ≤ 0.45). (Round your answer to four decimal places.) (b) n = 36; p = 0.29; Compute the probability that p̂ will exceed 0.35. (Round your answer to four...
Let x be binomial random variable with n=50 and p=.3. The probability of less than or...
Let x be binomial random variable with n=50 and p=.3. The probability of less than or equal to 13 successes, when using the normal approximation for binomial is ________. (Please show how to work the problem). a) -.6172 b) .3086 c) 3.240 d) .2324 e) .2676 f) -.23224
A) Suppose we are considering a binomial random variable X with n trials and probability of...
A) Suppose we are considering a binomial random variable X with n trials and probability of success p. Identify each of the following statements as either TRUE or FALSE. a) False or True - The variance is greater than n. b)    False or True - P(X=n)=pn. c)    False or True - Each individual trial can have one of two possible outcomes. d)    False or True - The largest value a binomial random variable can take is n + 1. e)...
Let X be a binomial random variable with parameters n = 500 and p = 0.12....
Let X be a binomial random variable with parameters n = 500 and p = 0.12. Use normal approximation to the binomial distribution to compute the probability P (50 < X ≤ 65).
for a random variable of 16 trials that follows a binomial distribution with the probability of...
for a random variable of 16 trials that follows a binomial distribution with the probability of failure at 35%, find the probability of fewer than 8 success.
Let X be the binomial random variable obtained by adding n=4 Bernoulli Trials, each with probability...
Let X be the binomial random variable obtained by adding n=4 Bernoulli Trials, each with probability of success p=0.25. Define Y=|X-E(x)|. Find the median of Y. A.0 B.1 C.2 D.3 E.Does not exist
If x is a binomial random variable where n = 100 and p = 0.20, find...
If x is a binomial random variable where n = 100 and p = 0.20, find the probability that x is more than 18 using the normal approximation to the binomial. Check the condition for continuity correction.
A random variable has a 0.02 probability of success in each independent trial, where the total...
A random variable has a 0.02 probability of success in each independent trial, where the total number of trials is n= 90.         a.     What is the expected number of successes in 90 trials?         b.     What is the standard deviation of successes in 90 trials?         c.     Use the binomial distribution to find the probability of 90 trials.         d.     Use the Poisson distribution to approximation find the probability of   in                90 trials.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT