Question

Problem #7-18    Using the following equations, graph the constraints, and solve using the corner point...

Problem #7-18    Using the following equations, graph the constraints, and solve using the corner point approach.   NOTE: is a minimization problem like Holiday Turkey example in book

X1 = number of undergraduate courses

X2 = number of graduate courses

Minimize cost = $2,500X1 + $3,000X2

subject to           X1      >= 30

                          X2      >= 20

                         X1 + X2 >= 60

                         X1, X2 >= 0

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a. Solve the following linear programming model by using the graphical method: graph the constraints and...
a. Solve the following linear programming model by using the graphical method: graph the constraints and identify the feasible region then determine the optimal solution (s) (show your work). Minimize Z = 3x1 + 7x2 Subject to 9x1 + 3x2 ≥ 36 4x1 + 5x2 ≥ 40 x1 – x2 ≤ 0 2x1 ≤ 13 x1, x2 ≥ 0 b. Are any constraints binding? If so, which one (s)?
Solve the following linear programming model by using the graphical method: graph the constraints and identify...
Solve the following linear programming model by using the graphical method: graph the constraints and identify the feasible region. Using the corner points method, determine the optimal solution (s) (show your work). Maximize Z = 6.5x1 + 10x2 Subject to x1 + x2 ≤ 15 2x1 + 4x2 ≤ 40 x1 ≥ 8 x1, x2 ≥ 0 b. If the constraint x1 ≥ 8 is changed to x1 ≤ 8, what effect does this have on the optimal solution? Are...
Solve the following linear program using the simplex method. If the problem is two dimensional, graph...
Solve the following linear program using the simplex method. If the problem is two dimensional, graph the feasible region, and outline the progress of the algorithm. Minimize Z = 3X1 – 2X2 – X3 Subject to 4X1 + 5X2 – 2X3 ≤ 22                     X1 – 2X2 + X3 ≤ 30                     X1, X2, X3 ≥ 0
Solve the LP problem using graphical method. Determine the optimal values of the decision variables and...
Solve the LP problem using graphical method. Determine the optimal values of the decision variables and compute the objective function. Minimize Z = 2x1 + 3x2 Subject to             4x1 + 2x2 ≥ 20             2x1 + 6x2 ≥ 18               x1 + 2x2 ≤ 12 x1, x2  ≥ 0 with solution! thak you so much :D
Solve the following LP model using the dual simplex method. Use the format of the tabular...
Solve the following LP model using the dual simplex method. Use the format of the tabular form of the simplex without converting the problem into a maximization  problem.                                                 Minimize -2x1 – x2                                                 Subject to                                                                 x1+ x2+ x3 = 2                                                                 x1 + x4 = 1                                                                 x1, x2, x3, x4 ³ 0
Solve the following LP problem graphically using level curves. MAX: 7 X1 + 4 X2 Subject...
Solve the following LP problem graphically using level curves. MAX: 7 X1 + 4 X2 Subject to: 2X1 + X2 ≤ 16 X1 + X2 ≤ 10 2X1 + 5 X2 ≤ 40 X1, X2 ≥ 0 a. X1 = 4 b. X1 = 6 c. X1 = 8 d. X1 = 10
Solve the following system of equations using LU factorization with partial pivoting: 2x1 − 6x2 −...
Solve the following system of equations using LU factorization with partial pivoting: 2x1 − 6x2 − x3 = −38 −3x1 − x2 + 7x3 = −34 −8x1 + x2 − 2x3 = −40 I would like to write a matlab code to solve the problem without using loops or if statements. All i want is a code to swap the rows. I can solve the rest. Thank you in advance.
Solve the following LP problem graphically; confirm your results using Solver in MS Excel. Maximize profit...
Solve the following LP problem graphically; confirm your results using Solver in MS Excel. Maximize profit = 20x1 + 10x2 Subject to: 5x1 + 4x2 ≤ 250 2x1 + 5x2 ≤ 150 x1, x2 ≥ 0
Solve the following problem in the text book using Excel or Matlab. Calculate the work of...
Solve the following problem in the text book using Excel or Matlab. Calculate the work of mechanically reversible, isothermal compression of 1 mole of methyl chloride from 1 bar to 55 Bar at 100 C. Base calculations on the following forms of the virial equations. The submitted files should include: all input data, calculations and iterations performed in details. Comparison with results obtained from the built in function “If analysis” or “Solver “in Excel. Plot the error versus the number...
Use C++ in Solving Ordinary Differential Equations using a Fourth-Order Runge-Kutta of Your Own Creation Assignment:...
Use C++ in Solving Ordinary Differential Equations using a Fourth-Order Runge-Kutta of Your Own Creation Assignment: Design and construct a computer program in C++ that will illustrate the use of a fourth-order explicit Runge-Kutta method of your own design. In other words, you will first have to solve the Runge-Kutta equations of condition for the coefficients of a fourth-order Runge-Kutta method.   See the Mathematica notebook on solving the equations for 4th order RK method.   That notebook can be found at...