Question

Random samples of size n= 400 are taken from a population with p= 0.15. a.Calculate the...

Random samples of size n= 400 are taken from a population with p= 0.15.

a.Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the p
chart.

b.Suppose six samples of size 400 produced the following sample proportions: 0.06, 0.11, 0.09, 0.08, 0.14, and 0.16. Is the production process under control?

Homework Answers

Answer #1

Ans(a)- given that

Input:
No. of samples 6
Sample size 400
Sigma limits(z) 3

using the p- chart formula

and CL =

using above formulas we get

Output:
=
0.15
UCL = 0.20
LCL = 0.10

Ans(b)-

Calculations
Proportion
Sample Defective
UCL
LCL
1 0.060 0.15 0.2036 0.0964
2 0.110 0.15 0.2036 0.0964
3 0.090 0.15 0.2036 0.0964
4 0.080 0.15 0.2036 0.0964
5 0.140 0.15 0.2036 0.0964
6 0.160 0.15 0.2036 0.0964

graph-

p-chart-

we clearly see in this graph sample 1 lies below the LCL line since process is out of control.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Random samples of size n = 410 are taken from a population with p = 0.09....
Random samples of size n = 410 are taken from a population with p = 0.09. Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the p¯p¯ chart. (Round the value for the centerline to 2 decimal places and the values for the UCL and LCL to 3 decimal places.) Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the p¯p¯ chart if samples of 290 are used....
Random samples of size n = 200 are taken from a population with p = 0.08....
Random samples of size n = 200 are taken from a population with p = 0.08. a. Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the p¯chart b. Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the p¯ chart if samples of 120 are used. c. Discuss the effect of the sample size on the control limits. The control limits have a ___ spread with smaller...
QUESTION 20 Five samples of size 12 were collected. The data are provided in the following...
QUESTION 20 Five samples of size 12 were collected. The data are provided in the following table: Sample number 1 2 3 4 5 Sample mean 4.80 4.62 4.81 4.55 4.92 Sample standard deviation 0.30 0.33 0.31 0.32 0.37 The upper control limit (UCL) and lower control limit (LCL) for an s-chart are: 1.LCL = 0.0971, UCL = 0.5868. 2.LCL = 0.1154, UCL = 0.5366. 3.LCL = 0.1011, UCL = 0.6109. 4.LCL = 0.1034, UCL = 0.6246. 5.LCL = 0.0994,...
Consider the following results for independent samples taken from two populations. sample 1 n=400 p=0.48 sample...
Consider the following results for independent samples taken from two populations. sample 1 n=400 p=0.48 sample 2 n=300 p=0.36 Develop a 95% confidence interval for the difference between the two population proportions. Select one: a. (0.13 to 0.29) b. (0.05 to 0.19) c. (0.09 to 0.21) d. (0.06 to 0.18)
P Chart -This is the Sample Sample Portion Defective LCL Pbar UCL 0 0.06 0 0.16...
P Chart -This is the Sample Sample Portion Defective LCL Pbar UCL 0 0.06 0 0.16 0.65 1 0 0 0.16 0.65 2 0.04 0 0.16 0.65 3 0.1 0 0.16 0.65 4 0.06 0 0.16 0.65 5 0.04 0 0.16 0.65 6 0.12 0 0.16 0.65 7 0.1 0 0.16 0.65 8 0.08 0 0.16 0.65 9 0.08 0 0.16 0.65 10 0.1 0 0.16 0.65 11 0.12 0 0.16 0.65 12 0.1 0 0.16 0.65 13 0.12 0...
Ten samples of 15 parts each were taken from an ongoing process to establish a p-chart...
Ten samples of 15 parts each were taken from an ongoing process to establish a p-chart for control. The samples and the number of defectives in each are shown in the following table: SAMPLE n NUMBER OF DEFECTIVE ITEMS IN THE SAMPLE 1 15 2 2 15 2 3 15 2 4 15 0 5 15 2 6 15 1 7 15 3 8 15 2 9 15 1 10 15 3 a. Determine the p−p− , Sp, UCL and...
Twelve​ samples, each containing five​ parts, were taken from a process that produces steel rods at...
Twelve​ samples, each containing five​ parts, were taken from a process that produces steel rods at Emmanual​ Kodzi's factory. The length of each rod in the samples was determined. The results were tabulated and sample means and ranges were computed. Refer to Table S6.1 - Factors for computing control chart limits (3 sigma) for this problem. Sample ​Size, n Mean​ Factor, A2 Upper​ Range, D4 Lower​ Range, D3 2 1.880 3.268 0 3 1.023 2.574 0 4 0.729 2.282 0...
The following samples have been taken from an on-going process. Use these values to create both...
The following samples have been taken from an on-going process. Use these values to create both an X bar and an R chart, and then answer the questions below. Please show work. Sample 1: 56 48 53 58 52 Sample 2: 50 59 57 56 54 Sample 3: 61 59 56 55 58 Sample 4: 57 51 49 57 50 Sample 5: 50 49 57 55 56 Sample 6: 56 55 60 58 57 A) What is the value of...
Consider random samples of size 82 drawn from population A with proportion 0.45 and random samples...
Consider random samples of size 82 drawn from population A with proportion 0.45 and random samples of size 64 drawn from population B with proportion 0.11 . (a) Find the standard error of the distribution of differences in sample proportions, p^A-p^B. Round your answer for the standard error to three decimal places. standard error = Enter your answer in accordance to the question statement       (b) Are the sample sizes large enough for the Central Limit Theorem to apply?...
Ten samples of 15 parts each were taken from an ongoing process to establish a p-chart...
Ten samples of 15 parts each were taken from an ongoing process to establish a p-chart for control. The samples and the number of defectives in each are shown in the following table: SAMPLE n NUMBER OF DEFECTIVE ITEMS IN THE SAMPLE 1 15 1 2 15 1 3 15 3 4 15 1 5 15 0 6 15 0 7 15 2 8 15 1 9 15 2 10 15 1 a. Determine the p−p− , Sp, UCL and...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT