-. For what follows, Z denotes the standard normal random variable.
(1) P(Z<1.26) is about
(a) 0.7924
(b) 0.3962
(c) 0.1038
(d) 0.6038
(e) 0.8962
(2) P(-0.54 < Z < 0.78) is about
(a) 0.2054
(b) 0.0769
(c) 0.4877
(d) 0.2823
(e) 0.6877
-Assume the random variable X is normally distributed with mean 172 and standard deviation 10. Find the following probabilities.
(3) P(X<160)
(a) 0.8849
(b) 0.1151
(c) 0.9999
(d) 0.8078
(e) 0.8438
(4) P(X>150)
(a) 0.0139
(b) 0.9861
(c) 0.7910
(d) 0.8599
(e) 0.209
(5) P(X>170 or X<140)
(a) 0.4214
(b) 0.9993
(c) 0.58
(d) none of the above
1)
From Z score table
P(Z<1.26) = 0.8962
Option e is correct
2)
P(-0.54 < Z < 0.78) = P ( z < 0.78) - P( -0.54 < z)
= 0.7823 - 0.2946
= 0.4877
Option C is correct
3)
Mean = 172
S.D. = 10
P(X<160)
From Z score table
Z = (X - ?) / ?
Z = (160 - 172) / 10
Z = -1.2
P(X<160) = P( Z < -1.2) = 0.1151
option B
4)
Z score at 150
Z = (X - ?) / ?
Z = (150 - 172) / 10
Z = -2.2
P(X>150) = P ( Z > -2.2) = 0.9861?
option B
5)
Z score at x=170
Z = (X - ?) / ?
Z = (170 - 172) / 10
Z = -0.2
Z score at x=140
Z = (X - ?) / ?
Z = (140 - 172) / 10
Z = -3.2
P(X>170 or X<140) = P(X > -0.2 or X < -3.2)
= P( X > -0.2) + P( X < -3.2 )
= 0.5793? + 0.0007?
= 0.58
Get Answers For Free
Most questions answered within 1 hours.