Question

Question 3: You are given a fair coin. You flip this coin twice; the two flips...

Question 3: You are given a fair coin. You flip this coin twice; the two flips are independent. For each heads, you win 3 dollars, whereas for each tails, you lose 2 dollars. Consider the random variable

X = the amount of money that you win.

– Use the definition of expected value to determine E(X).

– Use the linearity of expectation to determineE(X).

You flip this coin 99 times; these flips are mutually independent. For each heads, you win 3 dollars, whereas for each tails, you lose 2 dollars. Consider the random variable

Y = the amount of money that you win.

Determine the expected value E(Y) of Y .

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You flip a coin until getting heads. Let X be the number of coin flips. a....
You flip a coin until getting heads. Let X be the number of coin flips. a. What is the probability that you flip the coin at least 8 times? b. What is the probability that you flip the coin at least 8 times given that the first, third, and fifth flips were all tails? c. You flip three coins. Let X be the total number of heads. You then roll X standard dice. Let Y be the sum of those...
Consider the following game. You flip an unfair coin, with P(H) = 1/4 and P(T) =...
Consider the following game. You flip an unfair coin, with P(H) = 1/4 and P(T) = 3/4, 100 times. Every time you flip a heads you win $8, and every time you flip a tails you lose $3. Let X be the amount of money you win/lose during the game. Justify your answers and show all work. Compute E(X) andCompute V (X).
Alice and Bob play a game in which they flip a coin repeatedly. Each time the...
Alice and Bob play a game in which they flip a coin repeatedly. Each time the coin is heads, Alice wins $1 (and Bob loses $1). Each time the coin is tails, Bob wins (and Alice loses) $2. They continue playing until Alice has won three flips. Prove that the expected value of Bob’s winnings is $3. (Hint: Use linearity of expected value to consider the expected value of each flip separately, with flips being worth $0 if they do...
You are flipping a fair coin with one side heads, and the other tails. You flip...
You are flipping a fair coin with one side heads, and the other tails. You flip it 30 times. a) What probability distribution would the above most closely resemble? b) If 8 out of 30 flips were heads, what is the probability of the next flip coming up heads? c) What is the probability that out of 30 flips, not more than 15 come up heads? d) What is the probability that at least 15 out 30 flips are heads?...
A player is given the choice to play this game. The player flips a coin until...
A player is given the choice to play this game. The player flips a coin until they get the first Heads. Points are awarded based on how many flips it took: 1 flip (the very first flip is Heads): 2 points 2 flips (the second flip was the first Heads): 4 points 3 flips (the third flip was the first Heads): 8 points 4 flips (the fourth flip was the first Heads): 16 points and so on. If the player...
You flip a fair coin. If the coin lands heads, you roll a fair six-sided die...
You flip a fair coin. If the coin lands heads, you roll a fair six-sided die 100 times. If the coin lands tails, you roll the die 101 times. Let X be 1 if the coin lands heads and 0 if the coin lands tails. Let Y be the total number of times that you roll a 6. Find P (X=1|Y =15) /P (X=0|Y =15) .
Suppose you flip a fair coin six times where A is the number of tails and...
Suppose you flip a fair coin six times where A is the number of tails and B is the number of heads. Prove if E(X*Y) is not equal to E(X)E(Y).
Suppose you can place a bet in the following game. You flip a fair coin (50-50...
Suppose you can place a bet in the following game. You flip a fair coin (50-50 chance it lands heads). If it lands heads, you get 4 dollars, if it lands tails, you pay 1 dollar. This is the only bet you can make. If you don't make the bet you will neither gain nor lose money. What is the expected utility of not placing the bet?
java beginner level NO ARRAYS in program Flip a coin (Assignment) How many times in a...
java beginner level NO ARRAYS in program Flip a coin (Assignment) How many times in a row can you flip a coin and gets heads? Use the random number generator to simulate the flipping of the coin. 0 means heads, 1 means tails. Start a loop, flip it, if heads, count it and keep flipping. If tails, stop the loop. Display the number of times in a row that heads came up. Once this is working, wrap a while loop...
Consider this game: each person flips a coin once, if it is heads, the person gets...
Consider this game: each person flips a coin once, if it is heads, the person gets $20, and if it is tails, the person loses $10. For a group of 5, each person flips a coin once and plays the game described above. What is the probability that this group of 5 will lose money as a group? (Hint: list all possible outcomes for this group and sum up the probabilities of outcomes with a total loss.)