In a survey of 1010 ?adults, 808 disapprove of the job the legislature is doing.
Construct? 90%, 95%, and? 99% confidence intervals for the population proportion. Interpret the results and compare the widths of the confidence intervals.
CI for | 90% |
n | 1010 |
p | 0.80 |
z-value of 90% CI | 1.6449 |
SE = sqrt(p*(1-p)/n) | 0.01259 |
ME = z*SE | 0.02070 |
Lower Limit = p - ME | 0.77930 |
Upper Limit = p + ME | 0.82070 |
90% CI | (0.7793 , 0.8207 ) |
CI width | 0.0414 |
CI for | 95% |
n | 1010 |
p | 0.80 |
z-value of 95% CI | 1.9600 |
SE = sqrt(p*(1-p)/n) | 0.01259 |
ME = z*SE | 0.02467 |
Lower Limit = p - ME | 0.77533 |
Upper Limit = p + ME | 0.82467 |
95% CI | (0.7753 , 0.8247 ) |
CI width | 0.0493 |
CI for | 99% |
n | 1010 |
p | 0.80 |
z-value of 99% CI | 2.5758 |
SE = sqrt(p*(1-p)/n) | 0.01259 |
ME = z*SE | 0.03242 |
Lower Limit = p - ME | 0.76758 |
Upper Limit = p + ME | 0.83242 |
99% CI | (0.7676 , 0.8324 ) |
CI width | 0.0648 |
As CI level increases width of confidence interval increases
Get Answers For Free
Most questions answered within 1 hours.