Consider the following hypotheses: H0: μ = 61 HA: μ ≠ 61 Approximate the p-value for this test based on the following sample information. Use Table 2. a. x¯ = 58; s = 10.3; n = 10 0.20 < p-value < 0.40 0.10 < p-value < 0.20 0.05 < p-value < 0.10 p-value < 0.05 p-value Picture 0.4 b. x¯ = 64; s = 10.3; n = 10 0.20 < p-value < 0.40 0.10< p-value < 0.20 0.05 < p-value < 0.10 p-value < 0.05 p-value Picture 0.4 c. x¯ = 57; s = 8.9; n = 13 0.10 < p-value < 0.20 0.01 < p-value < 0.03 0.05 < p-value < 0.10 p-value < 0.01 p-value Picture 0.2 d. x¯ = 58; s = 8.9; n = 19 0.10 < p-value < 0.20 0.01 < p-value < 0.03 0.05 < p-value < 0.10 p-value < 0.01 p-value Picture 0.2
Solution :
This is the two tailed test .
The null and alternative hypothesis is ,
H0 : = 61
Ha : 61
(a)
= 58
= 61
s = 10.3
n = 10
Degrees of freedom = n - 1 = 10 - 1 = 9
Test statistic = t
= ( - ) / s / n
= (58 - 61) / 10.3 / 10
= -0.92
Test statistic = -0.92
0.20 < p-value < 0.40
(b)
= 64
= 61
s = 10.3
n = 10
Degrees of freedom = n - 1 = 10 - 1 = 9
Test statistic = t
= ( - ) / s / n
= (64- 61) / 10.3 / 10
= 0.92
Test statistic = 0.92
0.20 < p-value < 0.40
(c)
= 57
= 61
s = 8.9
n = 13
Degrees of freedom = n - 1 = 13 - 1 = 12
Test statistic = t
= ( - ) / s / n
= (57 - 61) / 10.3 / 10
= -1.62
Test statistic = -1.62
0.10 < p-value < 0.20
(d)
= 58
= 61
s = 8.9
n = 19
Degrees of freedom = n - 1 = 19 - 1 = 18
Test statistic = t
= ( - ) / s / n
= (58 - 61) / 10.3 / 10
= -1.47
Test statistic = 1.47
0.10 < p-value < 0.20
Get Answers For Free
Most questions answered within 1 hours.