You want to build an interval estimate for the proportion of all college-bound high school graduates in Indiana who plan to pursue a career in science. | |||||||||
A survey a random sample 800 such students yields a point estimate of 22% from the survey. | |||||||||
13 | The standard error of the sample proportion is, | ||||||||
a | 0.0146 | ||||||||
b | 0.0159 | ||||||||
c | 0.0172 | ||||||||
d | 0.0186 | ||||||||
14 | The margin of error for a confidence interval with a confidence level of 90% is | ||||||||
a | 0.034 | ||||||||
b | 0.029 | ||||||||
c | 0.024 | ||||||||
d | 0.019 | ||||||||
15 | The upper end of the 95% confidence interval for the population proportion is, | ||||||||
a | 0.249 | ||||||||
b | 0.227 | ||||||||
c | 0.208 | ||||||||
d | 0.190 |
Question 13
We are given n = 800, p̂ = 0.22
Standard error = sqrt(p̂*(1 - p̂)/n)
Standard error = sqrt(0.22*(1 – 0.22)/800)
Standard error = sqrt(0.22*0.78/800)
Standard error = 0.014646
Answer: a. 0.0146
Question 14
Margin of error = Z*Standard error
We are given
Confidence level = 90%
So, Z = 1.6449 (by using z-table)
Margin of error = 1.6449*0.014646
Margin of error = 0.024091
Margin of error = 0.024
Answer: c. 0.024
Question 15
Upper end = p̂ + z*sqrt(p̂*(1 - p̂)/n)
Upper end = 0.22 + 1.6449*0.014646
Upper end = 0.22 + 0.024091
Upper end = 0.244091
Upper end = 0.244
Approximate answer: a. 0.249
Get Answers For Free
Most questions answered within 1 hours.