Question

Choose a quantitative variable. Measure it on two different samples of 10, drawn from two different...

Choose a quantitative variable. Measure it on two different samples of 10, drawn from two different populations. For example, you might measure the number of cups of chocolate consumed daily by men vs women. Provide a description of the data selected, and the two different populations you chose. Record the data, and for EACH sample, find the mean and standard deviation and the five-number summary. Compare your two samples using boxplots or histograms. Summarize your results in a paragraph, including a description of how you collected your data and your interpretation of the results. Does it appear that the two populations are similar, or different?

Homework Answers

Answer #1

SOLUTION

Data

Men Women
2 1
1 5
6 2
4 4
3 6
2 2
1 1
5 3
4 4
2 2

Descriptive Statistics

Men Women
Mean 3 3
Standard Error 0.537484 0.537484
Median 2.5 2.5
Mode 2 2
Standard Deviation 1.699673 1.699673
Sample Variance 2.888889 2.888889
Kurtosis -0.83495 -0.83495
Skewness 0.509148 0.509148
Range 5 5
Minimum 1 1
Maximum 6 6
Sum 30 30
Count 10 10

Box plot

From Box plot we can saythat both populations are similar

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two different simple random samples are drawn from two different populations. The first sample consists of...
Two different simple random samples are drawn from two different populations. The first sample consists of 2020 people with 1111 having a common attribute. The second sample consists of 22002200 people with 15801580 of them having the same common attribute. Compare the results from a hypothesis test of p 1p1equals=p 2p2 ​(with a 0.050.05 significance​level) and a 9595​% confidence interval estimate of p 1p1minus−p 2p2.
Independent random samples of 36 and 48 observations are drawn from two quantitative populations, 1 and...
Independent random samples of 36 and 48 observations are drawn from two quantitative populations, 1 and 2, respectively. The sample data summary is shown here. Sample 1 Sample 2 Sample Size 36 48 Sample Mean 1.28 1.32 Sample Variance 0.0570 0.0520 Do the data present sufficient evidence to indicate that the mean for population 1 is smaller than the mean for population 2? Use one of the two methods of testing presented in this section. (Round your answer to two...
Two different simple random samples are drawn from two different populations. The first sample consists of...
Two different simple random samples are drawn from two different populations. The first sample consists of 30 people with 14 having a common attribute. The second sample consists of 1800 people with 1294 of them having the same common attribute. Compare the results from a hypothesis test of p1= p2 ​(with a 0.05 significance​ level) and a 95​% confidence interval estimate of p1−p2. Identify hypothesis, t statistic, critical value, p value
Two different simple random samples are drawn from two different populations. The first sample consists of...
Two different simple random samples are drawn from two different populations. The first sample consists of 30 people with 15 having a common attribute. The second sample consists of 1900 people with 1379 of them having the same common attribute. Compare the results from a hypothesis test of p1=p2 ​(with a 0.01 significance​ level) and a 99​% confidence interval estimate of p1−p2. Find hypothesis, test statistic, critical value, p value, and 95% CL.
Independent random samples of 42 and 36 observations are drawn from two quantitative populations, 1 and...
Independent random samples of 42 and 36 observations are drawn from two quantitative populations, 1 and 2, respectively. The sample data summary is shown here. Sample 1 Sample 2 Sample Size 42 36 Sample Mean 1.34 1.29 Sample Variance 0.0510 0.0560 Do the data present sufficient evidence to indicate that the mean for population 1 is larger than the mean for population 2? Perform the hypothesis test for H0: (μ1 − μ2) = 0 versus Ha: (μ1 − μ2) >...
Two different simple random samples are drawn from two different populations. The first sample consists of...
Two different simple random samples are drawn from two different populations. The first sample consists of 20 people with 10 having a common attribute. The second sample consists of 2200 people with 1595 of them having the same common attribute. Compare the results from a hypothesis test of p1 = p2 ​(with a 0.01 significance​ level) and a 99​% confidence interval estimate of p1 - p2. 1. Identify the test statistic ____ (round to 2 decimal places) 2. Identify the...
Two different simple random samples are drawn from two different populations. The first sample consists of...
Two different simple random samples are drawn from two different populations. The first sample consists of 20 people with 11 having a common attribute. The second sample consists of 1800 people with 1283 of them having the same common attribute. Compare the results from a hypothesis test of p1 =p2 ​(with a 0.05 significance​ level) and a 95​% confidence interval estimate of p1 - p2 What are the null and alternative hypotheses for the hypothesis​ test? Identify the test statistic.​(Round...
Two different simple random samples are drawn from two different populations. The first sample consists of...
Two different simple random samples are drawn from two different populations. The first sample consists of 30 people with 15 having a common attribute. The second sample consists of 2100 people with 1477 of them having the same common attribute. Compare the results from a hypothesis test of p1 =p2 ​(with a 0.05 significance​ level) and a 95​% confidence interval estimate of p1 - p2 What are the null and alternative hypotheses for the hypothesis​ test. Identify the test statistic.​(Round...
1) a) Assume that you have two AISI 1045 cylindrical samples with two different diameters: one...
1) a) Assume that you have two AISI 1045 cylindrical samples with two different diameters: one 1 in. thick and the other 2 in. thick. You astenitize and quench both samples in water. Then you cut a section and measure the hardness at the center of each sample. Would you expect to get the same results? Explain your answer. b) Assume that you have two cylindrical steel samples with 1 in. diameter, one made out of AISI 1045 and another...
Quantitative Variable we are interested in comparing: # of HR’s (Home Run’s) American League:                           
Quantitative Variable we are interested in comparing: # of HR’s (Home Run’s) American League:                                                                National League: Sample Size:                                      28                                Sample Size:                                      22 Sample Mean:                                   20.14286                        Sample Mean:                                   18.77 Sample Standard Deviation:           10.44107                        Sample Standard Deviation:            8.257 You are now going to do a two-sample hypothesis test on this data Hypothesis: I would expect an American League player to hit more HR’s (Home Run’s) on average, than a National League Player? Introduction: State...