Let z denote the standard normal random variable. Find the value of z0z0 such that:
(a) P(z≤z0)=0.89P(z≤z0)=0.89
z0=z0=
(b) P(−z0≤z≤z0)=0.039P(−z0≤z≤z0)=0.039
z0=z0=
(c) P(−z0≤z≤z0)=0.1112P(−z0≤z≤z0)=0.1112
z0=z0=
(d) P(z≥z0)=0.0497P(z≥z0)=0.0497
z0=z0=
(e) P(−z0≤z≤0)=0.4874P(−z0≤z≤0)=0.4874
z0=z0=
(f) P(−2.03≤z≤z0)=0.5540P(−2.03≤z≤z0)=0.5540
z0=z0=
We have used standard normal distribution table (Z table) to calculate these values.
(a)
P(z≤z0)=0.89
=> z0 = 1.2265
(b)
P(−z0≤z≤z0)=0.039
-=> P(0 ≤ z≤ z0) = 0.039/2 = 0.0195
=> P(z ≤ z0) - P(z ≤ 0) = 0.0195
=> P(z ≤ z0) - 0.5 = 0.0195
=> P(z ≤ z0) = 0.5195
=> z0 = 0.0489
(c)
P(−z0≤z≤z0)=0.1112
-=> P(0 ≤ z≤ z0) = 0.1112/2 = 0.0556
=> P(z ≤ z0) - P(z ≤ 0) = 0.0556
=> P(z ≤ z0) - 0.5 = 0.0556
=> P(z ≤ z0) = 0.5556
=> z0 = 0.1398
(d)
P(z≥z0)=0.0497
z0 = 1.6478
(e)
P(−z0≤z≤0)=0.4874
-=> P(0 ≤ z≤ z0) = 0.4874/2 = 0.2437
=> P(z ≤ z0) - P(z ≤ 0) = 0.2437
=> P(z ≤ z0) - 0.5 = 0.2437
=> P(z ≤ z0) = 0.7437
=> z0 = 0.6548
(f)
P(−2.03≤z≤z0)=0.5540
=> P(z ≤ z0) - P(z ≤ -2.03) = 0.5540
=> P(z ≤ z0) - 0.0212 = 0.5540
=> P(z ≤ z0) = 0.5540 + 0.0212 = 0.5752
Get Answers For Free
Most questions answered within 1 hours.