Question

The lowest and highest observations in a population are 17 and 57, respectively. What is the...

The lowest and highest observations in a population are 17 and 57, respectively. What is the minimum sample size n required to estimate μ with 90% confidence if the desired margin of error is E = 2.8? What happens to n if you decide to estimate μ with 95% confidence?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The lowest and highest observations in a population are 28 and 62, respectively. What is the...
The lowest and highest observations in a population are 28 and 62, respectively. What is the minimum sample size n required to estimate μ with 90% confidence if the desired margin of error is E = 1.6? What happens to n if you decide to estimate μ with 99% confidence? Use Table 1. (Round intermediate calculations to 4 decimal places and "z-value" to 3 decimal places. Round up your answers to the nearest whole number.)    Confidence Level n            ...
10. The lowest and highest observations in a population are 19 and 63, respectively. What is...
10. The lowest and highest observations in a population are 19 and 63, respectively. What is the minimum sample size n required to estimate μ with 95% confidence if the desired margin of error is E = 2.6? What happens to n if you decide to estimate μ with 90% confidence? (You may find it useful to reference the z table. Round intermediate calculations to at least 4 decimal places and "z" value to 3 decimal places. Round up your...
Consider a population with population standard deviation σ=17. What is the minimum sample size required so...
Consider a population with population standard deviation σ=17. What is the minimum sample size required so that the margin of error of the 95% confidence interval of μ is not larger than 4? 70 18 69 71
In the planning stage, a sample proportion is estimated as pˆp^ = 54/60 = 0.90. Use...
In the planning stage, a sample proportion is estimated as pˆp^ = 54/60 = 0.90. Use this information to compute the minimum sample size n required to estimate p with 95% confidence if the desired margin of error E = 0.09. What happens to n if you decide to estimate p with 90% confidence? Use Table 1. (Round intermediate calculations to 4 decimal places and "z-value" to 3 decimal places. Round up your answers to the nearest whole number.)   ...
In the planning stage, a sample proportion is estimated as pˆ = 30/50 = 0.60. Use...
In the planning stage, a sample proportion is estimated as pˆ = 30/50 = 0.60. Use this information to compute the minimum sample size n required to estimate p with 95% confidence if the desired margin of error E = 0.07. What happens to n if you decide to estimate p with 90% confidence? (You may find it useful to reference the z table. Round intermediate calculations to at least 4 decimal places and "z" value to 3 decimal places....
What is the minimum sample size required to estimate a population mean with 95% confidence when...
What is the minimum sample size required to estimate a population mean with 95% confidence when the desired margin of error is 1.6? The population standard deviation is known to be 10.36. a) n = 102 b) n = 103 c) n = 161 d) n = 162
In the planning stage, a sample proportion is estimated as pˆ = 90/150 = 0.60. Use...
In the planning stage, a sample proportion is estimated as pˆ = 90/150 = 0.60. Use this information to compute the minimum sample size n required to estimate p with 99% confidence if the desired margin of error E = 0.12. What happens to n if you decide to estimate p with 95% confidence? (You may find it useful to reference the z table. Round intermediate calculations to at least 4 decimal places and "z" value to 3 decimal places....
The sample size required to estimate, at 95% confidence, a population mean with a maximum allowable...
The sample size required to estimate, at 95% confidence, a population mean with a maximum allowable margin of error of +/- 1.5 when the population standard deviation is 5 is ____ observations. The sample size required to estimate, at 90% confidence, a population proportion with a maximum allowable margin of error of +/- 3.00 percentage points is ____ observations.
please answer all the questions 1. A Confidence Interval (CI) for a population characteristic is: An...
please answer all the questions 1. A Confidence Interval (CI) for a population characteristic is: An alternative to a Point Estimate An interval of plausible values for a population characteristic An interval of ranges for a large sample that is unbiased A population of critical values Directions: Find each specified point estimate or confidence interval. 2. A survey of teachers reports that a point estimate for the mean amount of money spent each week on lunch is $18.00. If the...
13. In the planning stage, a sample proportion is estimated as p^ = 36/60 = 0.60....
13. In the planning stage, a sample proportion is estimated as p^ = 36/60 = 0.60. Use this information to compute the minimum sample size n required to estimate p with 95% confidence if the desired margin of error E = 0.09. What happens to n if you decide to estimate p with 90% confidence? (You may find it useful to reference the z table. Round intermediate calculations to at least 4 decimal places and "z" value to 3 decimal...