A small business has recorded sales over the last 20 years. The data is provided in accompanying workbook, tab “Small Business”. The business would like to use this data to provide a sales forecast for the future, specifically, the next two years. Build a spreadsheet that shows all the forecasts on a side-by-side basis so they can be compared for effectiveness using an error measure.
Small Business Sales | |
Year | Sales |
1 | 279 |
2 | 288 |
3 | 334 |
4 | 379 |
5 | 408 |
6 | 412 |
7 | 416 |
8 | 435 |
9 | 428 |
10 | 435 |
11 | 462 |
12 | 440 |
13 | 474 |
14 | 476 |
15 | 497 |
16 | 460 |
17 | 481 |
18 | 462 |
19 | 436 |
20 | 451 |
Chart showing the data in time.
The chart shows that the sales increases with time i.e., data shows
an increasing trend in the long run.
Moving average forecasts for sales with 2, 4, and 6
period moving averages over the 20-year period.
Small Business Sales
Year Sales 2-Year MA 4-Year
MA 6-Year MA
1 279
283.5
2 288
311 320
3 334
356.5
352.25 350
4 379
393.5
383.25 372.833333
5 408
410 403.75
397.333333
6 412
414 417.75
413
7 416
425.5
422.75 422.333333
8 435
431.5 428.5
431.333333
9 428
431.5 440
436
10 435
448.5
441.25 445.666667
11 462
451 452.75
452.5
12 440
457 463
464
13 474
475 471.75
468.166667
14 476
486.5
476.75 471.333333
15 497
478.5 478.5
475
16 460
470.5 475
468.666667
17 481
471.5
459.75 464.5
18 462
449 457.5
19 436
443.5
20 451
Exponential smoothing forecasts for sales using the
values of alpha equal to 0.2, 0.5 and 0.8 over the 20-year
period.
exponential smoothing forecasts for
sales
Year Sales alpha=0.2
alpha=0.5 alpha=0.8
1 279 #N/A #N/A
#N/A
2 288 279 279
279
3 334 286.2 283.5
280.8
4 379 324.44 308.75
291.44
5 408 368.088
343.875 308.952
6 412 400.0176
375.9375 328.7616
7 416 409.60352
393.96875 345.40928
8 435 414.720704
404.984375 359.527424
9 428 430.9441408
419.9921875 374.6219392
10 435 428.5888282
423.9960938 385.2975514
11 462 433.7177656
429.4980469 395.2380411
12 440 456.3435531
445.7490234 408.5904329
13 474 443.2687106
442.8745117 414.8723463
14 476 467.8537421
458.4372559 426.697877
15 497 474.3707484
467.2186279 436.5583016
16 460 492.4741497
482.109314 448.6466413
17 481 466.4948299
471.054657 450.917313
18 462 478.098966
476.0273285 456.9338504
19 436 465.2197932
469.0136642 457.9470803
20 451 441.8439586
452.5068321 453.5576643
A linear trend forecast for sales over the 20-year
period.
On running simple linear regression we get the following
result.
Coefficients
Intercept 335.4526316
X Variable 1 8.304511278
Thus, y (sale) = 335.4526 + x (year) * 8.30451
e “quadratic trend” forecasts for sales over the
20-year period
For this we will fit a second degree parabolic trend to the given
data,
Yt =a + bx +cx2
Normal equations for estimating a,b and c are :
∑y_t=na+b∑x+c∑x^2
∑xy_t=a ∑x+b ∑x^2+c ∑x^3
∑x^2 y_t=a ∑x^2+b∑x^3+c∑x^4
y TIME x = 2t -21 x^2
X^3 X^4 X*Y
X^2*Y
279 1 -9.5 90.25
-857.375 8145.063 -2650.5
25179.75
288 2 -8.5 72.25
-614.125 5220.063 -2448
20808
334 3 -7.5 56.25
-421.875 3164.063 -2505
18787.5
379 4 -6.5 42.25
-274.625 1785.063 -2463.5
16012.75
408 5 -5.5 30.25
-166.375 915.0625 -2244
12342
412 6 -4.5 20.25
-91.125 410.0625 -1854
8343
416 7 -3.5 12.25
-42.875 150.0625 -1456
5096
435 8 -2.5 6.25
-15.625 39.0625 -1087.5
2718.75
428 9 -1.5 2.25
-3.375 5.0625 -642 963
435 10 -0.5 0.25
-0.125 0.0625 -217.5
108.75
462 11 0.5 0.25
0.125 0.0625 231 115.5
440 12 1.5 2.25
3.375 5.0625 660 990
474 13 2.5 6.25
15.625 39.0625 1185
2962.5
476 14 3.5 12.25
42.875 150.0625 1666 5831
497 15 4.5 20.25
91.125 410.0625 2236.5
10064.25
460 16 5.5 30.25
166.375 915.0625 2530
13915
481 17 6.5 42.25
274.625 1785.063 3126.5
20322.25
462 18 7.5 56.25
421.875 3164.063 3465
25987.5
436 19 8.5 72.25
614.125 5220.063 3706
31501
451 20 9.5 90.25
857.375 8145.063 4284.5
40702.75
8453 0 665
0 39667.25 5522.5 262751.3
Putting Values from table and solving we will get,
Y=457.33+ 8.305*x + x2 *(-1.043)
How was “the best” forecast determined?
For the best forecast, you have to find a residual sum of squares
for each of the models. Model having the least residual sum of the
square is the best-fitted model.
Make forecasts for the next two years using all 8
models above.
Moving Average models cannot be used for forecasting future
trends.
While by putting the value of x in the other models you can get the
forecasted value of y.
findings of this forecasting exercise, what are the
recommendations to the management of the small business.
I will recommend Quadratic model for forecasting because it will
have the least residual sum of square.
Get Answers For Free
Most questions answered within 1 hours.