Question

Given the linear correlation coefficient r and the sample size n, determine the critical values of r and use your finding to state whether or not the given r represents a significant linear correlation. Use a significance level of 0.05. r = 0.353, n = 15

Answer #1

Given

significance level = 0.05

linear correlation coefficient (r) = 0.353,

sample size (n) = 15

degrees of freedom = n - 2 = 15 - 2 = 13

We can find the critical value from the table =
**0.514**

Remember if |r| approaches 1, your data becomes more and more
correlated.

Since r in the problem statemnet = 0.353, which is smaller in
absolute value than the critical r value (0.514), you would say
that **your data is NOT significantly
correlated**.

please upvote if this helped

given the linear correlation coefficient and the sample size
n, determine the critical values of r and use your finding to state
whether or not the given r represents a significant linear
correlation. Use a significance level of 0.05 r=0.353, n=15

Given the linear correlation coefficient r and the sample size
n, determine the critical values of r and use your finding to state
whether or not the given r represents a significant linear
correlation. Use a significance level of 0.05. r = 0.353, n =
15

Given the linear correlation coefficient r and the sample size
n, determine the critical values of r and use your finding to state
whether or not the given r represents a significant linear
correlation. Use a significance level of 0.05. r = 0.105, n =
15

Given the linear correlation coefficient r and the sample size
n, determine the critical values of r and use your finding to state
whether or not the given r represents a significant linear
correlation. Use a significance level of 0.05. r = 0.105, n =
15

Given the linear correlation coefficient r and the sample size
n, determine the critical values of r and use your finding to
state whether or not the given r represents a significant linear
correlation. Use a significance level of 0.05. r=0.543, n=25.
please help

Given the linear correlation coefficient r and the sample size
n, determine the critical values of r and use your finding to
state whether or not the given r represents a significant linear
correlation. Use a significance level of 0.05. r=−0.816, n=5
A.Critical values: r=plus or minus±0.950, no significant
linear correlation
B.Critical values: r=plus or minus±0.878, significant linear
correlation
C.Critical values: r=0.950, significant linear correlation
D.Critical values: r=plus or minus±0.878, no significant
linear correlation

(a) Suppose n = 6 and the sample correlation coefficient is r =
0.908. Is r significant at the 1% level of significance (based on a
two-tailed test)? (Round your answers to three decimal places.) t =
critical t =
(b) Suppose n = 10 and the sample correlation coefficient is r =
0.908. Is r significant at the 1% level of significance (based on a
two-tailed test)? (Round your answers to three decimal places.) t =
critical t =

(a) Suppose n = 6 and the sample correlation
coefficient is r = 0.894. Is r significant at the
1% level of significance (based on a two-tailed test)? (Round your
answers to three decimal places.)
t
=
critical t
=
Conclusion:
Yes, the correlation coefficient ρ is significantly
different from 0 at the 0.01 level of significance.
No, the correlation coefficient ρ is not significantly
different from 0 at the 0.01 level of
significance.
(b) Suppose n = 10 and...

Determine whether the given correlation coefficient is
statistically significant at the specified level of significance
and sample size.
r=0.418 , α=0.01, n=20

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 5 minutes ago

asked 6 minutes ago

asked 36 minutes ago

asked 36 minutes ago

asked 47 minutes ago

asked 53 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago