Question

Suppose my friend and I are tossing a biased coin (the chance of the coin landing...

Suppose my friend and I are tossing a biased coin (the chance of the coin landing heads is p> 1/2). I get one dollar each time the coin lands heads, and I have to pay one dollar to my friend each time it lands tails. I will stop playing if my net gain is three dollars (net gain = amount won-amount lost).

a) What is the chance that i will stop after exactly three tosses?

b) What is the chance that i will stop after exactly four tosses?

(c) What is the chance that I will stop after exactly five tosses?

Hint: Make a diagram of what can happen on the first toss, and each subsequent toss.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A coin is biased so that the probability of the coin landing heads is 2/3. This...
A coin is biased so that the probability of the coin landing heads is 2/3. This coin is tossed three times. A) Find the probability that it lands on heads all three times. B) Use answer from part (A) to help find the probability that it lands on tails at least once.
Suppose I have two biased coins: coin #1, which lands heads with probability 0.9999, and coin...
Suppose I have two biased coins: coin #1, which lands heads with probability 0.9999, and coin #2, which lands heads with probability 0.1. I conduct an experiment as follows. First I toss a fair coin to decide which biased coin I pick (say, if it lands heads, I pick coin #1, and otherwise I pick coin #2) and then I toss the biased coin twice. Let A be the event that the biased coin #1 is chosen, B1 the event...
In need of assistance. Please show your work -----> Given: Chance Experiment involving tossing a biased...
In need of assistance. Please show your work -----> Given: Chance Experiment involving tossing a biased coin. Probability of heads: p = .20 A) The coin is tossed 12 times. Let z = the # of heads tossed. i) What type of distribution would you use to find probabilities in this case? What is the general distribution function, p(z), you would use to find probabilities? ii) Find the probability of tossing exactly 5 heads iii) Probability of tossing at least...
(Q6) A coin is biased so that the probability of tossing a head is 0.45. If...
(Q6) A coin is biased so that the probability of tossing a head is 0.45. If this coin is tossed 55 times, determine the probabilities of the following events. (Round your answers to four decimal places.) (a) The coin lands heads more than 21 times. (b) The coin lands heads fewer than 28 times. (c) The coin lands heads at least 20 times but at most 27 times. (Q7) A company finds that one out of three employees will be...
Deriving fair coin flips from biased coins: From coins with uneven heads/tails probabilities construct an experiment...
Deriving fair coin flips from biased coins: From coins with uneven heads/tails probabilities construct an experiment for which there are two disjoint events, with equal probabilities, that we call "heads" and "tails". a. given c1 and c2, where c1 lands heads up with probability 2/3 and c2 lands heads up with probability 1/4, construct a "fair coin flip" experiment. b. given one coin with unknown probability p of landing heads up, where 0 < p < 1, construct a "fair...
1. Suppose you suspect a coin is biased against tails, and that you decided to conduct...
1. Suppose you suspect a coin is biased against tails, and that you decided to conduct a test of hypothesis by tossing the coin n = 15 times. a. What are the null and the alternative hypotheses? b. What is the rejection region in terms of X = number of tails obtained in the 15 tosses that you need to use so that the level ? of the test is as close as 0.05 (remember your ? needs to be...
Our intuition about chance behavior is not very accurate. In particular, we tend to expect that...
Our intuition about chance behavior is not very accurate. In particular, we tend to expect that the long-run pattern described by probability will show up in the short run as well. For example, we tend to think that tossing a coin 10 times will give close to five heads. a) Set the probability of heads in the Probability applet to 0.5 and the number of tosses to 10. Click “Toss” to simulate 10 tosses of a balanced coin. What was...
Suppose you can place a bet in the following game. You flip a fair coin (50-50...
Suppose you can place a bet in the following game. You flip a fair coin (50-50 chance it lands heads). If it lands heads, you get 4 dollars, if it lands tails, you pay 1 dollar. This is the only bet you can make. If you don't make the bet you will neither gain nor lose money. What is the expected utility of not placing the bet?
My friend and I are playing a gambling game in which we each roll a die....
My friend and I are playing a gambling game in which we each roll a die. We then compare the numbers on the two dice to determine the outcome. If my roll is larger, I win $1 and my friend loses $1. If her roll is larger, I lose $1 and she wins $1. And if our two rolls are equal, we both don’t win or lose any money. (a) Write your answers as simplified fractions: What is the chance...
This is my one of homework questions. I actually have no idea how to approach into...
This is my one of homework questions. I actually have no idea how to approach into the solution and what I have to solve for? Thank you in advance! (a) Suppose that a given coin is known to be “fair” or “unbiased” (i.e., the probability of Heads is 0.5 per toss). In an experiment, the coin is to be given n = 10 independent tosses, resulting in exactly one out of 210 possible outcomes. Rank the following five outcomes in...