Question

For the data set shown​ below, complete parts​ (a) through​ (d) below.x34578 y4561214​(a) Find the estimates...

For the data set shown​ below, complete parts​ (a) through​ (d) below.x34578 y4561214​(a) Find the estimates of beta 0 and beta 1.beta 0 almost equals 0equalsnothing ​(Round to three decimal places as​ needed.)beta 1almost equals 1equalsnothing ​(Round to three decimal places as​ needed.)

X: 3,4,5,7,8

Y: 3,6,7,11,13

Homework Answers

Answer #1

Solution :

X Y XY X^2 Y^2
3 3 9 9 9
4 6 24 16 36
5 7 35 25 49
7 11 77 49 121
8 13 104 64 169
n 5
sum(XY) 249.00
sum(X) 27.00
sum(Y) 40.00
sum(X^2) 163.00
sum(Y^2) 384.00
Numerator 165.00
Denominator 165.89
r 0.9946
r square 0.9893
Xbar(mean) 5.4000
Ybar(mean) 8.0000
SD(X) 1.8547
SD(Y) 3.5777
beta1 1.919
beta0 -2.361

beta 1 = 1.919

beta 0 = -2.361

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For the data set shown​ below, complete parts​ (a) through​ (d) below. x 33 44 55...
For the data set shown​ below, complete parts​ (a) through​ (d) below. x 33 44 55 77 88 y 44 66 77 1313 1515 ​(a)  Find the estimates of beta 0β0 and beta 1β1. beta 0β0almost equals≈b 0b0equals=negative 3.244−3.244 ​(Round to three decimal places as​ needed.) beta 1β1almost equals≈b 1b1equals=2.2672.267 ​(Round to three decimal places as​ needed.)​(b)   Compute the standard​ error, the point estimate for sigmaσ. s Subscript eseequals=nothing ​(Round to four decimal places as​ needed.)
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40 50 60 y 100 97 93 81 68 ​(a) Use technology to find the estimates of beta β0 and beta β1. beta β0almost equals≈b0equals=nothing ​(Round to two decimal places as​ needed.) beta β1almost equals≈b1equals=nothing ​(Round to two decimal places as​ needed.) B.)
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40 50 60 y 100 97 89 83 70 ​(a) Use technology to find the estimates of beta 0β0 and beta 1β1. beta 0β0almost equals≈b 0b0equals=nothing ​(Round to two decimal places as​ needed.) beta 1β1almost equals≈b 1b1equals=nothing ​(Round to two decimal places as​ needed.)
For the data set shown? below, complete parts? (a) through? (d) below. x 3 4 5...
For the data set shown? below, complete parts? (a) through? (d) below. x 3 4 5 7 8 y 4 6 8 12 13 ?(a)??Find the estimates of beta 0 and beta 1. beta 0almost equalsb 0equals nothing ?(Round to three decimal places as? needed.) beta 1almost equalsb 1equals nothing ?(Round to three decimal places as? needed.) ?(b)??Compute the standard? error, the point estimate for sigma. s Subscript eequals nothing ?(Round to four decimal places as? needed.) ?(c)??Assuming the residuals...
For the data set shown​ below, complete parts​ (a) through​ (d) below. x 3 4 5...
For the data set shown​ below, complete parts​ (a) through​ (d) below. x 3 4 5 7 8 y 5 7 6 13 14 ​(a)  Find the estimates of beta 0 and beta 1. beta 0almost equalsb 0equals nothing ​(Round to three decimal places as​ needed.) beta 1almost equalsb 1equals nothing ​(Round to three decimal places as​ needed.) ​(b)  Compute the standard​ error, the point estimate for sigma. s Subscript eequals nothing ​(Round to four decimal places as​ needed.) ​(c)  ...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40 50 60 y 102 95 91 83 70 ​ (a) Use technology to find the estimates of beta 0 and beta 1. beta 0 almost equals b0= ​ (Round to two decimal places as​ needed.) beta1 almost equals b1= (Round to two decimal places as​ needed.) (b) Use the technology to compute the standard error, the point estimate for o. Sc= (Round to four...
For the data set shown below, complete parts (a) through (d) below. X 20 30 40...
For the data set shown below, complete parts (a) through (d) below. X 20 30 40 50 60 Y 98 93 91 85 68 ​ (a) Use technology to find the estimates of beta 0 and beta 1. beta 0 ~ b 0=_____​(Round to two decimal places as​ needed.) beta 1 ~ b 1=_____(Round to two decimal places as​ needed.) (b) Use technology to compute the standard error, the point estimate for o' (o with a little tag on the...
For the data set shown​ below, complete parts​ (a) through​ (d) below. x 3 4 5...
For the data set shown​ below, complete parts​ (a) through​ (d) below. x 3 4 5 7 8 y 4 7 8 12 13 (a) Find the estimates of β0 and β1. β0 ≈b0 = ____ ​(Round to three decimal places as​ needed.) β1 ≈b1 = ____ (Round to three decimal places as​ needed.) ​(b)  Compute the standard​ error, the point estimate for σ. se= ______ ​(c)  Assuming the residuals are normally​ distributed, determine sb1 . Sb1= _____ (d) ​Assuming...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x y 20 98...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x y 20 98 30 95 40 89 50 85 60 72 (a) Use technology to find the estimates of Β0 and Β1. Β0 ≈ b0 = 112.6 ​(Round to two decimal places as​ needed.) Β1 ≈ b1 = -0.62 (Round to two decimal places as​ needed.) (b) Use technology to compute the standard​ error, the point estimate for σ. Se = __?__ ​(Round to four decimal places...
For the data set shown​ below, complete parts​ (a) through​ (d) below. x 33 44 55...
For the data set shown​ below, complete parts​ (a) through​ (d) below. x 33 44 55 77 88 y 55 66 77 1212 1414 Find the estimates of beta 0β0 and beta 1β1.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT