Question

Suppose the random variable X follows the Poisson P(m) PDF, and that you have a random...

Suppose the random variable X follows the Poisson P(m) PDF, and that you have a random sample X1, X2,...,Xn from it. (a)What is the Cramer-Rao Lower Bound on the variance of any unbiased estimator of the parameter m? (b) What is the maximum likelihood estimator ofm?(c) Does the variance of the MLE achieve the CRLB for all n?

Homework Answers

Answer #1

a)

Here,

The CRLB is given by:

Now,

Now,

So, --------(1)

Using Central limit theorem we know, -------------(2)

So,

Thus, CRLB =

b)

Equating (1) to 0, we get,

which is the MLE of m.

c)

Now, {From (2)}

So, it achieves the CRLB.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1, X2, . . . , Xn be iid exponential random variables with unknown mean...
Let X1, X2, . . . , Xn be iid exponential random variables with unknown mean β. (1) Find the maximum likelihood estimator of β. (2) Determine whether the maximum likelihood estimator is unbiased for β. (3) Find the mean squared error of the maximum likelihood estimator of β. (4) Find the Cramer-Rao lower bound for the variances of unbiased estimators of β. (5) What is the UMVUE (uniformly minimum variance unbiased estimator) of β? What is your reason? (6)...
6. Let X1, X2, ..., Xn be a random sample of a random variable X from...
6. Let X1, X2, ..., Xn be a random sample of a random variable X from a distribution with density f (x)  ( 1)x 0 ≤ x ≤ 1 where θ > -1. Obtain, a) Method of Moments Estimator (MME) of parameter θ. b) Maximum Likelihood Estimator (MLE) of parameter θ. c) A random sample of size 5 yields data x1 = 0.92, x2 = 0.7, x3 = 0.65, x4 = 0.4 and x5 = 0.75. Compute ML Estimate...
Let X_1,…, X_n  be a random sample from the Bernoulli distribution, say P[X=1]=θ=1-P[X=0]. and Cramer Rao Lower...
Let X_1,…, X_n  be a random sample from the Bernoulli distribution, say P[X=1]=θ=1-P[X=0]. and Cramer Rao Lower Bound of θ(1-θ) =((1-2θ)^2 θ(1-θ))/n Find the UMVUE of θ(1-θ) if such exists. can you proof [part (b) ] using (Leehmann Scheffe Theorem step by step solution) to proof [∑X1-nXbar^2 ]/(n-1) is the umvue , I have the key solution below x is complete and sufficient. S^2=∑ [X1-Xbar ]^2/(n-1) is unbiased estimator of θ(1-θ) since the sample variance is an unbiased estimator of the...
Let X1,..., Xn be a random sample from a distribution with pdf as follows: fX(x) =...
Let X1,..., Xn be a random sample from a distribution with pdf as follows: fX(x) = e^-(x-θ) , x > θ 0 otherwise. Find the sufficient statistic for θ. Find the maximum likelihood estimator of θ. Find the MVUE of θ,θˆ Is θˆ a consistent estimator of θ?
Let X1,X2...Xn be i.i.d. with N(theta, 1) a) find the CR Rao lower-band for the variance...
Let X1,X2...Xn be i.i.d. with N(theta, 1) a) find the CR Rao lower-band for the variance of an unbiased  estimator of theta b)------------------------------------of theta^2 c)-----------------------------------of P(X>0)
Let ?1, ?2,…. . , ?? (n random variables iid) as a variable X whose pdf...
Let ?1, ?2,…. . , ?? (n random variables iid) as a variable X whose pdf is given by ??-a-1 for ? ≥1. (a) For ? ≥ 1 calculate ? (??? ≤ ?) = ? (?). Deduce the function density of probabilities of Y = lnX. (b) Determine the maximum likelihood estimator (MLE) of ? and show that he is without biais
Let two random variables X and Y satisfy Y |X = x ∼ Poisson (λx) for...
Let two random variables X and Y satisfy Y |X = x ∼ Poisson (λx) for all possible values x from X, with λ being an unknown parameter. If (x1, Y1), ...,(xn, Yn) is a random sample from the random variable Y |X = x, construct the estimator for λ using the method of maximum likelihood and determine its unbiasedness.
Let X1, . . . , Xn be i.i.d from pmf f(x|λ) where f(x) = (e^(−λ)*(λ^x))/x!,...
Let X1, . . . , Xn be i.i.d from pmf f(x|λ) where f(x) = (e^(−λ)*(λ^x))/x!, λ > 0, x = 0, 1, 2 a) Find MoM (Method of Moments) estimator for λ b) Show that MoM estimator you found in (a) is minimal sufficient for λ c) Now we split the sample into two parts, X1, . . . , Xm and Xm+1, . . . , Xn. Show that ( Sum of Xi from 1 to m, Sum...
Suppose that X1,..., Xn form a random sample from the uniform distribution on the interval [0,θ],...
Suppose that X1,..., Xn form a random sample from the uniform distribution on the interval [0,θ], where the value of the parameter θ is unknown (θ>0). (1)What is the maximum likelihood estimator of θ? (2)Is this estimator unbiased? (Indeed, show that it underestimates the parameter.)
A geometric distribution has a pdf given by P(X = x) = p(1-p)^x, where x =...
A geometric distribution has a pdf given by P(X = x) = p(1-p)^x, where x = 0, 1, 2,..., and 0 < p < 1. This form of the geometric starts at x=0, not at x=1. Given are the following properties: E(X) = (1-p)/p and Var(X) = (1-p)/p^2 A random sample of size n is drawn, the data x1, x2, ..., xn. Likelihood is p = 1/(1+ x̄)) MLE is p̂ = 1/(1 + x̄)) asymptotic distribution is p̂ ~...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT