Question

Suppose that the miles-per-gallon (mpg) rating of passenger cars is normally distributed with a mean and...

Suppose that the miles-per-gallon (mpg) rating of passenger cars is normally distributed with a mean and a standard deviation of 33.4 and 3.4 mpg, respectively. [You may find it useful to reference the z table.] a. What is the probability that a randomly selected passenger car gets more than 34 mpg? (Round “z” value to 2 decimal places, and final answer to 4 decimal places.) b. What is the probability that the average mpg of five randomly selected passenger cars is more than 34 mpg? (Round “z” value to 2 decimal places, and final answer to 4 decimal places.) c. If five passenger cars are randomly selected, what is the probability that all of the passenger cars get more than 34 mpg? (Round “z” value to 2 decimal places, and final answer to 4 decimal places.)

Homework Answers

Answer #1

The distribution given here is:

a) The probability required here is:

P(X > 34)

Converting it to a standard normal variable, we get:

Getting it from the standard normal tables, we get:

Therefore 0.4286 is the required probability here.

b) For 5 passengers the probability for sample mean is computed as:

Converting it to a standard normal variable, we get:

Getting it from the standard normal tables, we get:

Therefore 0.3483 is the required probability here.

c) Probability that all of the 5 passengers selected get more than 34 mpg is computed as:

= 0.4286*0.4286*..... 5 times

= 0.42865

= 0.0145

Therefore 0.0145 is the required probability here.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that the miles-per-gallon (mpg) rating of passenger cars is normally distributed with a mean and...
Suppose that the miles-per-gallon (mpg) rating of passenger cars is normally distributed with a mean and a standard deviation of 36.5 and 4.4 mpg, respectively. [You may find it useful to reference the z table.] a. What is the probability that a randomly selected passenger car gets more than 38 mpg? (Round “z” value to 2 decimal places, and final answer to 4 decimal places.) b. What is the probability that the average mpg of three randomly selected passenger cars...
Assume that gas mileage for cars is normally distributed with a mean of 23.5 miles per...
Assume that gas mileage for cars is normally distributed with a mean of 23.5 miles per gallon and a standard deviation of 10 miles per gallon. Show all work. Just the answer, without supporting work, will receive no credit. (a) What is the probability that a randomly selected car gets between 15 and 30 miles per gallon? (Round the answer to 4 decimal places) (b) Find the 75th percentile of the gas mileage distribution. (Round the answer to 2 decimal...
A certain model of automobile has its gas mileage (in miles per gallon, or mpg) normally...
A certain model of automobile has its gas mileage (in miles per gallon, or mpg) normally distributed, with a mean of 32 mpg and a standard deviation of 4 mpg. Find the probability that a car selected at random has the following gas mileages. (Round your answers to four decimal places.) (a) less than 26 mpg (b) greater than 34 mpg (c) between 30 and 34 mpg
An automobile manufacturer claims that their car has a 33.7 miles/gallon (MPG) rating. An independent testing...
An automobile manufacturer claims that their car has a 33.7 miles/gallon (MPG) rating. An independent testing firm has been contracted to test the MPG for this car. After testing 12 cars they found a mean MPG of 34.0 with a variance of 2.56. Is there sufficient evidence at the 0.05 level that the cars have an incorrect manufacturer's MPG rating? Assume the population distribution is approximately normal. Step 4 of 5 : Determine the decision rule for rejecting the null...
An automobile manufacturer claims that its car has a 28.0 miles/gallon (MPG) rating. An independent testing...
An automobile manufacturer claims that its car has a 28.0 miles/gallon (MPG) rating. An independent testing firm has been contracted to test the MPG for this car since it is believed that the car has an incorrect manufacturer's MPG rating. After testing 270 cars, they found a mean MPG of 27.8. Assume the variance is known to be 6.25 A level of significance of 0.02 will be used. Find the value of the test statistic. Round your answer to 2...
An automobile manufacturer claims that its car has a 57.7 miles/gallon (MPG) rating. An independent testing...
An automobile manufacturer claims that its car has a 57.7 miles/gallon (MPG) rating. An independent testing firm has been contracted to test the MPG for this car since it is believed that the car has an incorrect manufacturer's MPG rating. After testing 210 cars, they found a mean MPG of 57.4. Assume the standard deviation is known to be 1.9. A level of significance of 0.1 will be used. Find the value of the test statistic. Round your answer to...
The miles-per-gallon obtained by the 1995 model Z cars is normally distributed with a mean of...
The miles-per-gallon obtained by the 1995 model Z cars is normally distributed with a mean of 22 miles-per-gallon and a standard deviation of 5 miles-per-gallon. a. What is the probability that a car will get between 13.35 and 35.1 miles-per-gallon? b. What is the probability that a car will get more than 29.6 miles-per-gallon? c. What is the probability that a car will get less than 21 miles-per-gallon?
1. Based on tests of the Chevrolet Cobalt, engineers have found that the miles per gallon...
1. Based on tests of the Chevrolet Cobalt, engineers have found that the miles per gallon in highway driving are normally distributed, with a mean of 32 mpg and a standard deviation of 3.5 mpg. Include a sketch for each part. a. What is the probability that a randomly selected Cobalt gets more than 34 mpg? b. Ten Cobalts are randomly selected. What is the probability that the mean is more than 34 mpg?
A Ford Focus manual transmission gets an average of 28 miles per gallon (mpg) in city...
A Ford Focus manual transmission gets an average of 28 miles per gallon (mpg) in city driving with a standard deviation of 1.6 mpg. Assume that gas mileage is normally distributed. a) If a Focus is selected at random, what is the probability that it will get more than 31 mpg? b) What is the probability that a randomly selected Focus will get between 20 and 30 mpg? c) What is the probability that a randomly selected Focus will get...
Overall, the Miles Per Gallon for customers of MallState is normally distributed around 34 MPG with...
Overall, the Miles Per Gallon for customers of MallState is normally distributed around 34 MPG with a standard deviation of 2.5 MPG. a. How likely is that somebody will drive a vehicle that gets a MPG between 35 and 37? b. How likely it is that somebody will drive a vehicle that gets a MPG lower than 33MPG? c. How likely it is to have a vehicle with MPG between 32 and 35MPG?