Question

A sample of size 20 yields a sample mean of 23.5 and a sample standard deviation...

A sample of size 20 yields a sample mean of 23.5 and a sample standard deviation of 4.3.

Test H0: Mean ≥ 25 at α = 0.10. HA: Mean < 25. This is a one-tailed test with lower reject region bounded by a negative critical value.

Which of the following are:

1) Pvalue 0.135. H0 not rejected. Conclude mean ≥ 25 plausible

2) None of the other answers are correct

3) Pvalue 0.068 H0 rejected. Conclude mean < 25

4) Pvalue 0.932. H0 not rejected. Conclude mean ≥ 25 plausible

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4. With 90% confidence, for sample mean 341.00, sample standard deviation 14.80, and sample size 35,...
4. With 90% confidence, for sample mean 341.00, sample standard deviation 14.80, and sample size 35, what is the upper confidence limit with 2 decimal places? 8. Match the rules for rejecting H0 at the right to the following tests a. Two-tail test with lower and upper reject regions b. One-tail test with lower reject region c. For any test hypothesis, ANOVA, or Chi Squared, this rule for rejecting H0 always applies. d. One-tail test with upper reject region                ...
A sample mean, sample standard deviation, and sample size are given. Use the one-mean t-test to...
A sample mean, sample standard deviation, and sample size are given. Use the one-mean t-test to perform the required hypothesis test about the mean, μ, of the population from which the sample was drawn. Use the critical-value approach. , , n = 11, H0: μ = 18.7, Ha: μ ≠ 18.7, α = 0.05 Group of answer choices Test statistic: t = 1.03. Critical values: t = ±2.201. Do not reject H0. There is not sufficient evidence to conclude that...
A sample mean, sample standard deviation, and sample size are given. Use the one-mean t-test to...
A sample mean, sample standard deviation, and sample size are given. Use the one-mean t-test to perform the required hypothesis test about the mean, μ, of the population from which the sample was drawn. Use the critical-value approach. , , n = 18, H0: μ = 10, Ha: μ < 10, α = 0.01 Group of answer choices Test statistic: t = -4.43. Critical value: t = -2.33. Reject H0. There is sufficient evidence to support the claim that the...
A sample of size 234, taken from a normally distributed population whose standard deviation is known...
A sample of size 234, taken from a normally distributed population whose standard deviation is known to be 5.70, has a sample mean of 75.54. Suppose that we have adopted the null hypothesis that the actual population mean is greater than or equal to 76, that is, H0 is that μ ≥ 76 and we want to test the alternative hypothesis, H1, that μ < 76, with level of significance α = 0.1. a) What type of test would be...
A sample of size 81 is taken from a population with unknown mean and standard deviation...
A sample of size 81 is taken from a population with unknown mean and standard deviation 4.5.   In a test of H0: μ = 5 vs. Ha: μ < 5, if the sample mean was 4, which of the following is true? (i) We would reject the null hypothesis at α = 0.01. (ii) We would reject the null hypothesis at α = 0.05. (iii) We would reject the null hypothesis at α = 0.10. only (i)   only (iii)   both...
A sample of size 194, taken from a normally distributed population whose standard deviation is known...
A sample of size 194, taken from a normally distributed population whose standard deviation is known to be 9.50, has a sample mean of 91.34. Suppose that we have adopted the null hypothesis that the actual population mean is greater than or equal to 93, that is, H0 is that μ ≥ 93 and we want to test the alternative hypothesis, H1, that μ < 93, with level of significance α = 0.05. a) What type of test would be...
b. Determine the sample mean and sample standard deviation of the cholesterol of all 100 patients....
b. Determine the sample mean and sample standard deviation of the cholesterol of all 100 patients. Test the claim that the mean cholesterol is greater than 160. Use α = 0.05. (6 points) Sample Mean Sample Standard Deviation Hypotheses: You may write H0 and H1 Test Statistic Pvalue Critical Value Conclusion Interpretation c. Determine the sample mean and sample standard deviation of the BP of all 100 patients. Test the claim that the mean BP is 140. Use α =...
Consider the following hypothesis test. H0: μ ≥ 20 Ha: μ < 20 A sample of...
Consider the following hypothesis test. H0: μ ≥ 20 Ha: μ < 20 A sample of 50 provided a sample mean of 19.3. The population standard deviation is 2. (a) Find the value of the test statistic. (Round your answer to two decimal places.) (b) Find the p-value. (Round your answer to four decimal places.) p-value = (c) Using α = 0.05, state your conclusion. Reject H0. There is sufficient evidence to conclude that μ < 20.Reject H0. There is...
Consider the following hypothesis test. H0: μ ≤ 25 Ha: μ > 25 A sample of...
Consider the following hypothesis test. H0: μ ≤ 25 Ha: μ > 25 A sample of 40 provided a sample mean of 26.2. The population standard deviation is 6. (a) Find the value of the test statistic. (Round your answer to two decimal places.) (b)Find the p-value. (Round your answer to four decimal places.) (c)At α = 0.01, state your conclusion. Reject H0. There is sufficient evidence to conclude that μ > 25. Reject H0. There is insufficient evidence to...
A sample of size 12, taken from a normally distributed population has a sample mean of...
A sample of size 12, taken from a normally distributed population has a sample mean of 85.56 and a sample standard deviation of 9.70. Suppose that we have adopted the null hypothesis that the actual population mean is equal to 89, that is, H0 is that μ = 89 and we want to test the alternative hypothesis, H1, that μ ≠ 89, with level of significance α = 0.1. a) What type of test would be appropriate in this situation?...