Question

A one-sample test of H0: μ = 125 against Ha: μ > 125 is carried out...

A one-sample test of H0: μ = 125 against Ha: μ > 125 is carried out based on sample data from a Normal population. The SRS of size n = 15 produced a mean 132.8 and standard deviation 12.6.

What is the value of the appropriate test statistic?

Select one:

a. z = 2.40

b. t = 2.32

c. t = 2.40

d. z = 2.32

e. t = 1.76

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The following information is given for a one-sample t test: H0: μ = 100; HA: μ...
The following information is given for a one-sample t test: H0: μ = 100; HA: μ < 100 Sample statistics: x̅= 95; s = 12.42 Value of the test statistic: t = –1.80 (a) Determine the sample size, n. (b) At a significance level α = 0.05, would your decision be to reject H0 or fail to reject H0?
You are testing H0: μ = 0 against Ha: μ ≠ 0 based on an SRS...
You are testing H0: μ = 0 against Ha: μ ≠ 0 based on an SRS of four observations from a Normal population. What values of the t statistic are statistically significant at the α = 0.005 level? a. t > 7.453 b. t <−7.453 or t > 7.453 c. t<−5.598 or t > 5.598
In a test of H0: μ = 200 against Ha: μ > 200, a sample of...
In a test of H0: μ = 200 against Ha: μ > 200, a sample of n = 120 observations possessed mean = 202 and standard deviation s = 34. Find the p-value for this test. Round your answer to 4 decimal places.
The one-sample t statistic for testing H0: μ = 10 Ha: μ > 10 from a...
The one-sample t statistic for testing H0: μ = 10 Ha: μ > 10 from a sample of n = 17 observations has the value t = 2.32. (a) What are the degrees of freedom for this statistic? (b) Give the two critical values t* from the t distribution critical values table that bracket ? < t < ? e) If you have software available, find the exact P-value. (Round your answer to four decimal places.)
We wish to test H0: μ = 120 versus Ha: μ ¹ 120, where ? is...
We wish to test H0: μ = 120 versus Ha: μ ¹ 120, where ? is known to equal 14. The sample of n = 36 measurements randomly selected from the population has a mean of ?̅ = 15. a. Calculate the value of the test statistic z. b. By comparing z with a critical value, test H0 versus Ha at ? = .05.
It is desired to test H0: μ = 50 against HA: μ ≠ 50 using α...
It is desired to test H0: μ = 50 against HA: μ ≠ 50 using α = 0.10. The population in question is uniformly distributed with a standard deviation of 15. A random sample of 49 will be drawn from this population. If μ is really equal to 45, what is the power of the test ?
Consider the following hypotheses: H0: μ = 9,100 HA: μ ≠ 9,100 The population is normally...
Consider the following hypotheses: H0: μ = 9,100 HA: μ ≠ 9,100 The population is normally distributed with a population standard deviation of 700. Compute the value of the test statistic and the resulting p-value for each of the following sample results. For each sample, determine if you can "reject/do not reject" the null hypothesis at the 10% significance level. (You may find it useful to reference the appropriate table: z table or t table) (Negative values should be indicated...
Consider the following hypotheses: H0: μ = 1,800 HA: μ ≠ 1,800 The population is normally...
Consider the following hypotheses: H0: μ = 1,800 HA: μ ≠ 1,800 The population is normally distributed with a population standard deviation of 440. Compute the value of the test statistic and the resulting p-value for each of the following sample results. For each sample, determine if you can "reject/do not reject" the null hypothesis at the 10% significance level. (You may find it useful to reference the appropriate table: z table or t table) (Negative values should be indicated...
Consider the following hypotheses: H0: μ ≤ 12.6 HA: μ > 12.6 A sample of 25...
Consider the following hypotheses: H0: μ ≤ 12.6 HA: μ > 12.6 A sample of 25 observations yields a sample mean of 13.4. Assume that the sample is drawn from a normal population with a population standard deviation of 3.2. (You may find it useful to reference the appropriate table: z table or t table) a-1. Find the p-value. p-value < 0.01 0.01 ≤ p-value < 0.025 0.025 ≤ p-value < 0.05 0.05 ≤ p-value < 0.10 p-value ≥ 0.10...
Question 1 The p-value of a test H0: μ= 20 against the alternative Ha: μ >20,...
Question 1 The p-value of a test H0: μ= 20 against the alternative Ha: μ >20, using a sample of size 25 is found to be 0.3215. What conclusion can be made about the test at 5% level of significance? Group of answer choices Accept the null hypothesis and the test is insignificant. Reject the null hypothesis and the test is insignificant. Reject the null hypothesis and the test is significant Question 2 As reported on the package of seeds,...