Question

A random sample of 49 measurements from a population with population standard deviation σ1 = 5...

A random sample of 49 measurements from a population with population standard deviation σ1 = 5 had a sample mean of x1 = 9. An independent random sample of 64 measurements from a second population with population standard deviation σ2 = 6 had a sample mean of x2 = 12. Test the claim that the population means are different. Use level of significance 0.01.

(a) Compute the corresponding sample distribution value. (Test the difference μ1 − μ2. Round your answer to two decimal places.)
(b) Find a 99% confidence interval for μ1 − μ2.

(Round your answers to two decimal places.)

lower limit    
upper limit    

Can you please explain how to get the μ1 − μ2 and the upper/lower limit

Homework Answers

Answer #1

Since, the interval does not include zero in it, hence we reject Ho.

Conclusion: Reject Ho. Therefore, we conclude that there is enough evidence to support the claim that the two population means are significantly different.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A random sample of n1 = 49 measurements from a population with population standard deviation σ1...
A random sample of n1 = 49 measurements from a population with population standard deviation σ1 = 5 had a sample mean of x1 = 11. An independent random sample of n2 = 64 measurements from a second population with population standard deviation σ2 = 6 had a sample mean of x2 = 14. Test the claim that the population means are different. Use level of significance 0.01. (a) Check Requirements: What distribution does the sample test statistic follow? Explain....
A random sample of n1 = 49 measurements from a population with population standard deviation σ1...
A random sample of n1 = 49 measurements from a population with population standard deviation σ1 = 5 had a sample mean of x1 = 8. An independent random sample of n2 = 64 measurements from a second population with population standard deviation σ2 = 6 had a sample mean of x2 = 11. Test the claim that the population means are different. Use level of significance 0.01.(a) Check Requirements: What distribution does the sample test statistic follow? Explain. The...
A random sample of n1 = 49 measurements from a population with population standard deviation σ1...
A random sample of n1 = 49 measurements from a population with population standard deviation σ1 = 3 had a sample mean of x1 = 13. An independent random sample of n2 = 64 measurements from a second population with population standard deviation σ2 = 4 had a sample mean of x2 = 15. Test the claim that the population means are different. Use level of significance 0.01. (a) Check Requirements: What distribution does the sample test statistic follow? Explain....
A random sample of 49 measurements from one population had a sample mean of 16, with...
A random sample of 49 measurements from one population had a sample mean of 16, with sample standard deviation 5. An independent random sample of 64 measurements from a second population had a sample mean of 19, with sample standard deviation 6. Test the claim that the population means are different. Use level of significance 0.01. (a) What distribution does the sample test statistic follow? Explain.(c) Compute x1 − x2. x1 − x2 = Compute the corresponding sample distribution value....
A random sample of 49 measurements from one population had a sample mean of 16, with...
A random sample of 49 measurements from one population had a sample mean of 16, with sample standard deviation 3. An independent random sample of 64 measurements from a second population had a sample mean of 18, with sample standard deviation 4. Test the claim that the population means are different. Use level of significance 0.01. (a) What distribution does the sample test statistic follow? Explain. The Student's t. We assume that both population distributions are approximately normal with known...
A random sample of n1 = 10 winter days in Denver gave a sample mean pollution...
A random sample of n1 = 10 winter days in Denver gave a sample mean pollution index x1 = 43. Previous studies show that σ1 = 21. For Englewood (a suburb of Denver), a random sample of n2 = 12 winter days gave a sample mean pollution index of x2 = 36. Previous studies show that σ2 = 13. Assume the pollution index is normally distributed in both Englewood and Denver. (a) Do these data indicate that the mean population...
1. The following data represent petal lengths (in cm) for independent random samples of two species...
1. The following data represent petal lengths (in cm) for independent random samples of two species of Iris. Petal length (in cm) of Iris virginica: x1; n1 = 35 5.1 5.9 6.1 6.1 5.1 5.5 5.3 5.5 6.9 5.0 4.9 6.0 4.8 6.1 5.6 5.1 5.6 4.8 5.4 5.1 5.1 5.9 5.2 5.7 5.4 4.5 6.4 5.3 5.5 6.7 5.7 4.9 4.8 5.9 5.1 Petal length (in cm) of Iris setosa: x2; n2 = 38 1.5 1.9 1.4 1.5 1.5...
The U.S. Geological Survey compiled historical data about Old Faithful Geyser (Yellowstone National Park) from 1870...
The U.S. Geological Survey compiled historical data about Old Faithful Geyser (Yellowstone National Park) from 1870 to 1987. Let x1 be a random variable that represents the time interval (in minutes) between Old Faithful eruptions for the years 1948 to 1952. Based on 9160 observations, the sample mean interval was x1 = 61.8 minutes. Let x2 be a random variable that represents the time interval in minutes between Old Faithful eruptions for the years 1983 to 1987. Based on 23,351...
A random sample of n1 = 14 winter days in Denver gave a sample mean pollution...
A random sample of n1 = 14 winter days in Denver gave a sample mean pollution index x1 = 43. Previous studies show that σ1 = 21. For Englewood (a suburb of Denver), a random sample of n2 = 12 winter days gave a sample mean pollution index of x2 = 37. Previous studies show that σ2 = 17. Assume the pollution index is normally distributed in both Englewood and Denver. (a) Do these data indicate that the mean population...
A random sample of n1 = 10 regions in New England gave the following violent crime...
A random sample of n1 = 10 regions in New England gave the following violent crime rates (per million population). x1: New England Crime Rate 3.5 3.9 4.0 4.1 3.3 4.1 1.8 4.8 2.9 3.1 Another random sample of n2 = 12 regions in the Rocky Mountain states gave the following violent crime rates (per million population). x2: Rocky Mountain Crime Rate 3.7 4.1 4.7 5.3 3.3 4.8 3.5 2.4 3.1 3.5 5.2 2.8 Assume that the crime rate distribution...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT