Question

A normal population has a mean of 21 and a standard deviation of 3. Use Appendix...

A normal population has a mean of 21 and a standard deviation of 3. Use Appendix B.3.

Compute the z value associated with 27. (Round your answer to 2 decimal places.) What proportion of the population is between 21 and 27? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)

What proportion of the population is less than 18? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)

Homework Answers

Answer #1

Normal population has mean = 21 and standard deviation = 3

The formula to find the z score associated with x = 27 is

Proportion between 21 and 27

The z score corresponding to 27 is 2, now the z score for x = 21 is

Using z table, Appendix B3, the probability for z = 0 is 0.5000 and the probability for z = 2 is 0.9772

To find the between proportion, just subtract small from large that is 0.9772 - 0.5000 = 0.4772

The proportion of the population between 21 and 27 is 0.4772

Proportion less than 18

First find z score for 18

The probability for z = -1 is 0.1587, the table provides the less than proportion.

The proportion of the population less than 18 is 0.1587

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A normal population has a mean of 21 and a standard deviation of 3. a. Compute...
A normal population has a mean of 21 and a standard deviation of 3. a. Compute the z value associated with 27. (Round your answer to 2 decimal places.) b. What proportion of the population is between 21 and 27? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)
A normal population has a mean of 21 and a standard deviation of 5. a. Compute...
A normal population has a mean of 21 and a standard deviation of 5. a. Compute the Z value associated with 25 (round answer to 2 decimal places) b. What proportion of the population is between 21 and 25? (Round z-score computation to 2 decimal places and final answer to 4 decimal places) c. What proportion of the population is less than 17? (Round z-score computation to 2 decimal places and final answer to 4 decimal places)
A normal population has a mean of 10.2 and a standard deviation of 1.4. Refer to...
A normal population has a mean of 10.2 and a standard deviation of 1.4. Refer to the table in Appendix B.1. a. Compute the z-value associated with 14.3. (Round the final answer to 2 decimal places.) z = b. What proportion of the population is between 10.2 and 14.3? (Round z-score computation to 2 decimal places and the final answer to 4 decimal places.) Proportion c. What proportion of the population is less than 10.0? (Round z-score computation to 2...
A normal population has a mean of 11.8 and a standard deviation of 4.6. Refer to...
A normal population has a mean of 11.8 and a standard deviation of 4.6. Refer to the table in Appendix B.1.   a. Compute the z-value associated with 14.3. (Round the final answer to 2 decimal places.) z =               b. What proportion of the population is between 11.8 and 14.3? (Round z-score computation to 2 decimal places and the final answer to 4 decimal places.) Proportion            c. What proportion of the population is less than 10.0?...
A normal population has a mean of 20.0 and a standard deviation of 4.0. a). Compute...
A normal population has a mean of 20.0 and a standard deviation of 4.0. a). Compute the z value associated with 25.0. (Round your answer to 2 decimal places.) b). What proportion of the population is between 20.0 and 25.0? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.) c). What proportion of the population is less than 18.0? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)
A normal population has a mean of 77 and a standard deviation of 8. You select...
A normal population has a mean of 77 and a standard deviation of 8. You select a sample of 36. Use Appendix B.1 for the z-values. Compute the probability that the sample mean is: (Round the z-values to 2 decimal places and the final answers to 4 decimal places.) a. Less than 74. Probability b. Between 74 and 80. Probability c. Between 80 and 81. Probability d. Greater than 81. Probability
A normal population has a mean of 89 and a standard deviation of 8. You select...
A normal population has a mean of 89 and a standard deviation of 8. You select a sample of 35. Use Appendix B.1 for the z-values. Compute the probability that the sample mean is: (Round the z-values to 2 decimal places and the final answers to 4 decimal places.) a. Less than 87. Probability b. Between 87 and 91 Probability c. Between 91 and 92. Probability d. Greater than 92. Probability
A normal population has a mean of 78 and a standard deviation of 9. You select...
A normal population has a mean of 78 and a standard deviation of 9. You select a sample of 57. Use Appendix B.1 for the z-values. Compute the probability that the sample mean is: (Round the z-values to 2 decimal places and the final answers to 4 decimal places.) a. Less than 77. Probability             b. Between 77 and 79. Probability             c. Between 79 and 81. Probability             d. Greater than 81. Probability            
A normal population has a mean of 61 and a standard deviation of 4. You select...
A normal population has a mean of 61 and a standard deviation of 4. You select a sample of 38. Compute the probability that the sample mean is: (Round your z values to 2 decimal places and final answers to 4 decimal places.) Less than 60. Between 60 and 62. Between 62 and 63. Greater than 63.
a.) Given a normal distribution with population standard deviation of 21 and a mean of μ...
a.) Given a normal distribution with population standard deviation of 21 and a mean of μ = 29. If a random sample of size 62 is drawn, find P(29 ≤ x ≤ 31). Round to three decimal places. b.) Find the positive z value such that 89% of the standard normal curve lies between –z and z. (Use 2 decimal places.) c.) For a standard normal curve, find the area between z = 0.28 and z = 1.95. (Use 4...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT