Determine if there is a linear relation among air temperature
x 1x1,
wind speed
x 2x2,
and wind chill y. The following data show the measured values for various days.
x 1x1 |
3030 |
negative 20−20 |
negative 30−30 |
3030 |
3030 |
00 |
negative 10−10 |
negative 30−30 |
00 |
negative 30−30 |
2020 |
negative 20−20 |
negative 10−10 |
1010 |
|
|||||||||||||||
x 2x2 |
3030 |
4040 |
7070 |
5050 |
2020 |
1010 |
5050 |
5050 |
4040 |
100100 |
9090 |
3030 |
2020 |
8080 |
||||||||||||||||
y |
00 |
negative 70−70 |
negative 96−96 |
negative 8−8 |
66 |
negative 22−22 |
negative 62−62 |
negative 88−88 |
negative 44−44 |
negative 104−104 |
negative 32−32 |
negative 64−64 |
negative 44−44 |
negative 44−44 |
(a) Find the least-squares regression equation
ModifyingAbove y with caret equals b 0 plus b 1 x 1 plus b 2 x 2y=b0+b1x1+b2x2,
where
x 1x1
is air temperature and
x 2x2
is wind speed, and y is the response variable, wind chill.
ModifyingAbove y with caretyequals=nothing plus+nothing x 1x1plus+nothing x 2x2
(Round to three decimal places as needed.)
Following is the output of multiple regression analysis:
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.996290652 | |||||
R Square | 0.992595063 | |||||
Adjusted R Square | 0.99124871 | |||||
Standard Error | 3.258838207 | |||||
Observations | 14 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 2 | 15659.17971 | 7829.589854 | 737.2476785 | 1.91588E-12 | |
Residual | 11 | 116.8202911 | 10.62002646 | |||
Total | 13 | 15776 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | -25.01812022 | 1.838852973 | -13.60528579 | 3.16915E-08 | -29.06540833 | -20.97083212 |
X1 | 1.33407627 | 0.040237161 | 33.1553277 | 2.24391E-12 | 1.245514875 | 1.422637665 |
X2 | -0.414300042 | 0.033654276 | -12.31047252 | 8.94273E-08 | -0.488372605 | -0.34022748 |
The least-squares regression equation line is
y' = -25.018+1.334*X1 - 0.414 * X2
Get Answers For Free
Most questions answered within 1 hours.