Question

How to calculate the following in Exel? PS: Exel! Normal population has a mean of 61...

How to calculate the following in Exel? PS: Exel!

Normal population has a mean of 61 and a standard deviation of 13. You select a random sample of 16.

Compute the probability the sample mean is:(Round z values to 2 decimal places and final answers to 4 decimal places.)

(a) Greater than 64.

(b) Less than 57. (

c) Between 57 and 64.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A normal population has a mean of 61 and a standard deviation of 4. You select...
A normal population has a mean of 61 and a standard deviation of 4. You select a sample of 38. Compute the probability that the sample mean is: (Round your z values to 2 decimal places and final answers to 4 decimal places.) Less than 60. Between 60 and 62. Between 62 and 63. Greater than 63.
A normal population has a mean of 78 and a standard deviation of 9. You select...
A normal population has a mean of 78 and a standard deviation of 9. You select a sample of 57. Use Appendix B.1 for the z-values. Compute the probability that the sample mean is: (Round the z-values to 2 decimal places and the final answers to 4 decimal places.) a. Less than 77. Probability             b. Between 77 and 79. Probability             c. Between 79 and 81. Probability             d. Greater than 81. Probability            
A normal population has a mean of 77 and a standard deviation of 8. You select...
A normal population has a mean of 77 and a standard deviation of 8. You select a sample of 36. Use Appendix B.1 for the z-values. Compute the probability that the sample mean is: (Round the z-values to 2 decimal places and the final answers to 4 decimal places.) a. Less than 74. Probability b. Between 74 and 80. Probability c. Between 80 and 81. Probability d. Greater than 81. Probability
A normal population has a mean of 89 and a standard deviation of 8. You select...
A normal population has a mean of 89 and a standard deviation of 8. You select a sample of 35. Use Appendix B.1 for the z-values. Compute the probability that the sample mean is: (Round the z-values to 2 decimal places and the final answers to 4 decimal places.) a. Less than 87. Probability b. Between 87 and 91 Probability c. Between 91 and 92. Probability d. Greater than 92. Probability
A normal population has a mean of 77 and a standard deviation of 5. You select...
A normal population has a mean of 77 and a standard deviation of 5. You select a sample of 48. Compute the probability that the sample mean is: (Round your z values to 2 decimal places and final answers to 4 decimal places.) A. less than 76 Probability: B. Between 76 and 78 Probability: C. Between 78 and 79 Probability: D. Greater than 79 Probability:
A normal population has a mean of 61 and a standard deviation of 20. A. What...
A normal population has a mean of 61 and a standard deviation of 20. A. What proportion of the population is greater than 108? B. What is the probability that a randomly chosen valve will be less than 81?
The mean of a population is 76 and the standard deviation is 13. The shape of...
The mean of a population is 76 and the standard deviation is 13. The shape of the population is unknown. Determine the probability of each of the following occurring from this population. a. A random sample of size 36 yielding a sample mean of 78 or more b. A random sample of size 120 yielding a sample mean of between 75 and 79 c. A random sample of size 219 yielding a sample mean of less than 76.7 (Round all...
A population of values has a normal distribution with mean of 50.3 and standard deviation of...
A population of values has a normal distribution with mean of 50.3 and standard deviation of 84.   Find the probability that from a sample of 226 the sample mean is greater than 49.7. Enter your answers as numbers accurate to 4 decimal places.
A population of values has a normal distribution with μ=50 and σ=98.2. You intend to draw...
A population of values has a normal distribution with μ=50 and σ=98.2. You intend to draw a random sample of size n=13. Find the probability that a single randomly selected value is less than -1.7. P(X < -1.7) = Find the probability that a sample of size n=13 is randomly selected with a mean less than -1.7. P(M < -1.7) = Enter your answers as numbers accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to...
A normal population has a mean of 65 and a standard deviation of 13. You select...
A normal population has a mean of 65 and a standard deviation of 13. You select a random sample of 25.    Round to 4 decimal places. a. 19% of the time, the sample average will be less than what specific value? Value    b. 19% of the time, the value of a randomly selected observation will be less than h. Find h. h    c. The probability that the sample average is more than k is 36%. Find k....