Question

Let ? be a random variable with a PDF ?(?)= 1/(x+1) for ? ∈ (0, ?...

Let ? be a random variable with a PDF
?(?)= 1/(x+1) for ? ∈ (0, ? − 1). Answer the following questions

  1. (a) Find the CDF

  2. (b) Show that a random variable ? = ln(? + 1) has uniform ?(0,1) distribution. Hint: calculate the CDF of ?

Homework Answers

Answer #1

TOPIC:Cdf and transformation of random variables using the cdf method.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X have a uniform distribution on (0, 1) and let y = -ln ( x...
Let X have a uniform distribution on (0, 1) and let y = -ln ( x ) a. Construct the CDF of Y graphically b. Find the CDF of Y using CDF method c. Find the PDF of Y using PDF method
3. Let X be a continuous random variable with PDF fX(x) = c / x^1/2, 0...
3. Let X be a continuous random variable with PDF fX(x) = c / x^1/2, 0 < x < 1. (a) Find the value of c such that fX(x) is indeed a PDF. Is this PDF bounded? (b) Determine and sketch the graph of the CDF of X. (c) Compute each of the following: (i) P(X > 0.5). (ii) P(X = 0). (ii) The median of X. (ii) The mean of X.
Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0...
Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0 < ? < 2. (a) Find the constant c. (b) Find the cumulative distribution function (CDF) of X. (c) Find P(X < 0.5), and P(X > 1.0). (d) Find E(X), Var(X) and E(X5 ).
A continuous random variable X has pdf ?x(?) = (? + 1) ?^2, 0 ≤ ?...
A continuous random variable X has pdf ?x(?) = (? + 1) ?^2, 0 ≤ ? ≤ ? + 1, Where B is the last digit of your registration number (e.g. for FA18-BEE-123, B=3). a) Find the value of a b) Find cumulative distribution function (CDF) of X i.e. ?? (?). c) Find the mean of X d) Find variance of X.
Suppose X is a random variable with pdf f(x)= {c(1-x) 0<x<1 {0 otherwise where c >...
Suppose X is a random variable with pdf f(x)= {c(1-x) 0<x<1 {0 otherwise where c > 0. (a) Find c. (b) Find the cdf F (). (c) Find the 50th percentile (the median) for the distribution. (d) Find the general formula for F^-1 (p), the 100pth percentile of the distribution when 0 < p < 1.
Let X be a random variable with pdf f(x)=12, 0<x<2. a) Find the cdf F(x). b)...
Let X be a random variable with pdf f(x)=12, 0<x<2. a) Find the cdf F(x). b) Find the mean of X. c) Find the variance of X. d) Find F (1.4). e) Find P(12<X<1). f) Find PX>3.
Let X ∼ Geo(?) with Θ = [0,1]. a) Show that pdf of the random variable...
Let X ∼ Geo(?) with Θ = [0,1]. a) Show that pdf of the random variable X is in the one-parameter regular exponential family of distributions. b) If X1, ... , Xn is a sample of iid Geo(?) random variables with Θ = (0, 1), determine a complete minimal sufficient statistic for ?.
Let X be a continuous random variable with a PDF of the form fX(x)={c(1−x),0,if x∈[0,1],otherwise. Find...
Let X be a continuous random variable with a PDF of the form fX(x)={c(1−x),0,if x∈[0,1],otherwise. Find the following values. 1. c= 2. P(X=1/2)= 3. P(X∈{1/k:k integer, k≥2})= 4. P(X≤1/2)=
Suppose X is a continuous uniform random variable between −1 and 1, i.e., X ∼ U(−1,...
Suppose X is a continuous uniform random variable between −1 and 1, i.e., X ∼ U(−1, 1). Find the CDF and the PDF of P = −ln|X|.
Question 3 Suppose the random variable X has the uniform distribution, fX(x) = 1, 0 <...
Question 3 Suppose the random variable X has the uniform distribution, fX(x) = 1, 0 < x < 1. Suppose the random variable Y is related to X via Y = (-ln(1 - X))^1/3. (a) Demonstrate that the pdf of Y is fY (y) = 3y^2 e^-y^3, y>0. (Hint: Work out FY (y)) (b) Determine E[Y ]. (Hint: Use Wolfram Alpha to undertake the integration.)