Question

(a) TRUE / FALSE If X is a random variable, then (E[X])^2 ≤ E[X^2]. (b) TRUE...

(a) TRUE / FALSE If X is a random variable, then (E[X])^2 ≤ E[X^2]. (b) TRUE / FALSE If Cov(X,Y) = 0, then X and Y are independent. (c) TRUE / FALSE If P(A) = 0.5 and P(B) = 0.5, then P(AB) = 0.25. (d) TRUE / FALSE There exist events A,B with P(A)not equal to 0 and P(B)not equal to 0 for which A and B are both independent and mutually exclusive. (e) TRUE / FALSE Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y) (f) TRUE / FALSE Fo rZ∼N(0,1), P(Z >−1.2) ≈ 0.1151 (g) TRUE / FALSE If X is a Poisson random variable with parameter λ= 2, then E[X] = 2. (h) TRUE / FALSE If X is an exponential random variable with parameter λ= 2, then E[X] = 2.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
TRUE or FALSE? Do not explain your answer. (a) If A and B are any independent...
TRUE or FALSE? Do not explain your answer. (a) If A and B are any independent events, then P(A ∪ B) = P(A) + P(B). (b) Every probability density function is a continuous function. (c) Let X ∼ N(0, 1) and Y follow exponential distribution with parameter λ = 1. If X and Y are independent, then the m.g.f. MXY (t) = e t 2 /2 1 1−t . (d) If X and Y have moment generating functions MX and...
A Poisson random variable is a variable X that takes on the integer values 0 ,...
A Poisson random variable is a variable X that takes on the integer values 0 , 1 , 2 , … with a probability mass function given by p ( i ) = P { X = i } = e − λ λ i i ! for i = 0 , 1 , 2 … , where the parameter λ > 0 . A)Show that ∑ i p ( i ) = 1. B) Show that the Poisson random...
Let X be a Poisson random variable with parameter λ and Y an independent Bernoulli random...
Let X be a Poisson random variable with parameter λ and Y an independent Bernoulli random variable with parameter p. Find the probability mass function of X + Y .
The random variable W = X – 3Y + Z + 2 where X, Y and...
The random variable W = X – 3Y + Z + 2 where X, Y and Z are three independent Normal random variables, with E[X]=E[Y]=E[Z]=2 and Var[X]=9,Var[Y]=1,Var[Z]=3. The pdf of W is: Uniform Poisson Binomial Normal None of the other pdfs.
true or false: a)Var(X)=E(X^2)-E(X)^2) is always true b)if A and B are dependent then P(A interesection...
true or false: a)Var(X)=E(X^2)-E(X)^2) is always true b)if A and B are dependent then P(A interesection B) - P(A)P(B)=1 c)one of the desavantages of the average is it small sensibility at data change d) Pearson coefficient does not indicate the assimetria of a empiric distribution
Suppose that X, Y, and Z are independent, with E[X]=E[Y]=E[Z]=2, and E[X2]=E[Y2]=E[Z2]=5. Find cov(XY,XZ). (Enter a...
Suppose that X, Y, and Z are independent, with E[X]=E[Y]=E[Z]=2, and E[X2]=E[Y2]=E[Z2]=5. Find cov(XY,XZ). (Enter a numerical answer.) cov(XY,XZ)= Let X be a standard normal random variable. Another random variable is determined as follows. We flip a fair coin (independent from X). In case of Heads, we let Y=X. In case of Tails, we let Y=−X. Is Y normal? Justify your answer. yes no not enough information to determine Compute Cov(X,Y). Cov(X,Y)= Are X and Y independent? yes no not...
Let X and Y be jointly distributed random variables with means, E(X) = 1, E(Y) =...
Let X and Y be jointly distributed random variables with means, E(X) = 1, E(Y) = 0, variances, Var(X) = 4, Var(Y ) = 5, and covariance, Cov(X, Y ) = 2. Let U = 3X-Y +2 and W = 2X + Y . Obtain the following expectations: A.) Var(U): B.) Var(W): C. Cov(U,W): ans should be 29, 29, 21 but I need help showing how to solve.
Consider two random variables X and Y such that E(X)=E(Y)=120, Var(X)=14, Var(Y)=11, Cov(X,Y)=0. Compute an upper...
Consider two random variables X and Y such that E(X)=E(Y)=120, Var(X)=14, Var(Y)=11, Cov(X,Y)=0. Compute an upper bound to P(|X−Y|>16)
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and...
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and Y denote a random variable that has a Poisson distribution with parameter λ = 6. Additionally, assume that X and Y are independent random variables. Derive the joint probability distribution function for X and Y. Make sure to explain your steps.
True or false? and explain please. (i) Let Z = 2X + 3. Then, Cov(Z,Y )...
True or false? and explain please. (i) Let Z = 2X + 3. Then, Cov(Z,Y ) = 2Cov(X,Y ). (j) If X,Y are uncorrelated, and Z = −5−Y + X , then V ar(Z) = V ar(X) + V ar(Y ). (k) Let X,Y be uncorrelated random variables (Cov(X,Y ) = 0) with variance 1 each. Let A = 3X + Y . Then, V ar(A) = 4. (l) If X and Y are uncorrelated (meaning that Cov[X,Y ] =...