Question

The lengths of a particular​ animal's pregnancies are approximately normally​ distributed, with mean equals 274 days...

The lengths of a particular​ animal's pregnancies are approximately normally​ distributed, with mean equals 274 days and standard deviation sigma equals 12 days. ​(a) What proportion of pregnancies lasts more than 280 ​days? ​(b) What proportion of pregnancies lasts between 268 and 283 ​days? ​(c) What is the probability that a randomly selected pregnancy lasts no more than 256 ​days? ​(d) A​ "very preterm" baby is one whose gestation period is less than 247 days. Are very preterm babies​ unusual?

Homework Answers

Answer #1

(a)

Proportion of pregnancies lasts more than 280 ​days = P(X > 280)

= P[Z > (280 - 274) /12]

= P[Z > 0.5]

= 0.3085

(b)

Proportion of pregnancies lasts between 268 and 283 ​days = P[268 < X < 283]

= P[X < 283] - P[X < 268]

= P[Z < (283 - 274) /12] - P[Z < (268 - 274) /12]

= P[Z < 0.75] - P[Z < -0.5]

= 0.7734 - 0.3085

= 0.4649

(c)

Probability that a randomly selected pregnancy lasts no more than 256 ​days = P[X < 256]

= P[Z < (256  - 274) /12]

= P[Z < -1.5]

= 0.0668

(d)

Probability that gestation period is less than 247 days = P[X < 247]

= P[Z < (247 - 274) /12]

= P[Z < -2.25]

= 0.012

Since the probability is less than 0.05, preterm babies​ seems unusual.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The lengths of a particular​ animal's pregnancies are approximately normally​ distributed, with mean mu equals 259...
The lengths of a particular​ animal's pregnancies are approximately normally​ distributed, with mean mu equals 259 days and standard deviation sigma equals 16 days. ​(a) What proportion of pregnancies lasts more than 263 ​days? ​(b) What proportion of pregnancies lasts between 255 and 267 ​days? ​(c) What is the probability that a randomly selected pregnancy lasts no more than 247 ​days? ​(d) A​ "very preterm" baby is one whose gestation period is less than 235 days. Are very preterm babies​...
The lengths of a particular​ animal's pregnancies are approximately normally​ distributed, with mean muequals254 days and...
The lengths of a particular​ animal's pregnancies are approximately normally​ distributed, with mean muequals254 days and standard deviation sigmaequals8 days. ​(a) What proportion of pregnancies lasts more than 268 ​days? ​(b) What proportion of pregnancies lasts between 248 and 256 ​days? ​(c) What is the probability that a randomly selected pregnancy lasts no more than 246 ​days? ​(d) A​ "very preterm" baby is one whose gestation period is less than 234 days. Are very preterm babies​ unusual?
The lengths of a particular​ animal's pregnancies are approximately normally​ distributed, with mean muequals252 days and...
The lengths of a particular​ animal's pregnancies are approximately normally​ distributed, with mean muequals252 days and standard deviation sigmaequals20 days. ​(a) What proportion of pregnancies lasts more than 282 ​days? ​(b) What proportion of pregnancies lasts between 247 and 262 ​days? ​(c) What is the probability that a randomly selected pregnancy lasts no more than 242 ​days? ​(d) A​ "very preterm" baby is one whose gestation period is less than 222 days. Are very preterm babies​ unusual?
The lengths of a particular​ animal's pregnancies are approximately normally​ distributed, with mean μ=265 days and...
The lengths of a particular​ animal's pregnancies are approximately normally​ distributed, with mean μ=265 days and standard deviation σ=12 days. ​(a) What proportion of pregnancies lasts more than 271 ​days? ​(b) What proportion of pregnancies lasts between 262 and 274 ​days? ​(c) What is the probability that a randomly selected pregnancy lasts no more than 244 ​days? ​(d) A​ "very preterm" baby is one whose gestation period is less than 238 days. Are very preterm babies​ unusual?
The lengths of a particular​ animal's pregnancies are approximately normally​ distributed, with mean μ=261 days and...
The lengths of a particular​ animal's pregnancies are approximately normally​ distributed, with mean μ=261 days and standard deviation σ=20 days. ​(a) What proportion of pregnancies lasts more than 296 ​days? ​(b) What proportion of pregnancies lasts between 256 and 266 ​days? ​(c) What is the probability that a randomly selected pregnancy lasts no more than 251 ​days? ​(d) A​ "very preterm" baby is one whose gestation period is less than 231 days. Are very preterm babies​ unusual?
The lengths of a particular​ animal's pregnancies are approximately normally​ distributed, with mean μ=262 days and...
The lengths of a particular​ animal's pregnancies are approximately normally​ distributed, with mean μ=262 days and standard deviation σ=16 days. ​(a) What proportion of pregnancies lasts more than 282 days? ​(b) What proportion of pregnancies lasts between234 and 266 days? ​(c) What is the probability that a randomly selected pregnancy lasts no more than 246 ​days? ​(d) A​ "very preterm" baby is one whose gestation period is less than 238 days. Are very preterm babies​ unusual?
The lengths of a particular​ animal's pregnancies are approximately normally​ distributed, with mean muequals276 days and...
The lengths of a particular​ animal's pregnancies are approximately normally​ distributed, with mean muequals276 days and standard deviation sigmaequals16 days. ​(a) What proportion of pregnancies lasts more than 300 ​days? ​(b) What proportion of pregnancies lasts between 268 and 288 ​days? ​(c) What is the probability that a randomly selected pregnancy lasts no more than 248 ​days? ​(d) A​ "very preterm" baby is one whose gestation period is less than 240 days. Are very preterm babies​ unusual? The proportion of...
The lengths of a particular​ animal's pregnancies are approximately normally​ distributed, with mean muequals264 days and...
The lengths of a particular​ animal's pregnancies are approximately normally​ distributed, with mean muequals264 days and standard deviation sigmaequals8 days. ​(a) What ​(c) What is the probability that a randomly selected pregnancy lasts no more than 260 ​days? ​(d) A​ "very preterm" baby is one whose gestation period is less than 244 days. Are very preterm babies​ unusual?
The lengths of a particular​ animal's pregnancies are approximately normally​ distributed, with mean muμequals=256256 days and...
The lengths of a particular​ animal's pregnancies are approximately normally​ distributed, with mean muμequals=256256 days and standard deviation sigmaσequals=1212 days.​(a) What proportion of pregnancies lasts more than 259259 ​days?​(b) What proportion of pregnancies lasts between 241241 and 262262 ​days?​(c) What is the probability that a randomly selected pregnancy lasts no more than 238238 ​days?​(d) A​ "very preterm" baby is one whose gestation period is less than 226226 days. Are very preterm babies​ unusual? LOADING... Click the icon to view a...
The lengths of a particular​ animal's pregnancies are approximately normally​ distributed, with mean muμequals=265265 days and...
The lengths of a particular​ animal's pregnancies are approximately normally​ distributed, with mean muμequals=265265 days and standard deviation sigmaσequals=1616 days.​(a) What proportion of pregnancies lasts more than 285285 ​days?​(b) What proportion of pregnancies lasts between 253253 and 273273 ​days?​(c) What is the probability that a randomly selected pregnancy lasts no more than 237237 ​days?​(d) A​ "very preterm" baby is one whose gestation period is less than 229229 days. Are very preterm babies​ unusual? LOADING... Click the icon to view a...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT