a-Find the best predicted systolic blood pressure in the left arm given that the systolic blood pressure in the right arm is 100 mm Hg (using Regression line).
Right Arm |
102 101 94 79 79 |
Left Arm |
175 169 182 146 144 |
b-Find the Linear correlation coefficient between the blood pressure in right arm (x) and the blood pressure in left arm (y) using the data given in part a
Solution:
Regression equation can be calculated as
Slope = n*summation(XY)-summation(X)*summation(Y) / n*(summation(X^2) -(summation(X)^2))
X Y XY X2 Y2
102 175 17850 10404 30625
101 169 17069 10201 28561
94 182 17108 8836 33124
79 146 11534 6241 21316
79 144 11376 6241 20736
455 816 74937 41923 134362
Slope =( 5*74937)-(455*816)/(5*41923)-(455*455)
= 374685-371280/ 209615-207025
= 3405/2590
= 1.3146
Intercept = summation(Y) -b*summation(X)/n
= (816-1.3146*455)/5
= 43.57
So regression line Y = 43.57 + 1.3146*X
At X = 100
Than Y = 43.57+1.3146×100 = 43.57 + 131.46 = 175
Correlation coefficient can be calculated as
r = n*summation(XY) - summation(X)*summation(Y) / sqrt(n*summation(X^2) -(summation(X)^2)((n*summation(Y^2)- (summation(Y)^2))
= 5*74937 - (455*816)/sqrt(((5*41923)-(455*455))((5*134362)-(816*816)))
After calculation we found
= 0.8671
Get Answers For Free
Most questions answered within 1 hours.